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Abstract

Arabic is a Semitic language which is
widely spoken with many dialects. Given
the success of pre-trained language models,
many transformer models trained on Arabic
and its dialects have surfaced. While
there have been an extrinsic evaluation of
these models with respect to downstream
NLP tasks, no work has been carried
out to analyze and compare their internal
representations. We probe how linguistic
information is encoded in the transformer
models, trained on different Arabic dialects.
We perform a layer and neuron analysis
on the models using morphological tagging
tasks for different dialects of Arabic and a
dialectal identification task. Our analysis
enlightens interesting findings such as: i) word
morphology is learned at the lower and middle
layers, ii) while syntactic dependencies are
predominantly captured at the higher layers,
iii) despite a large overlap in their vocabulary,
the MSA-based models fail to capture the
nuances of Arabic dialects, iv) we found that
neurons in embedding layers are polysemous
in nature, while the neurons in middle layers
are exclusive to specific properties.

1 Introduction

Arabic is a linguistically rich language, with its
structures realized using both concatenative and
templatic morphology. The agglutinating aspect
of the language adds to the complexity where
a given word could be formed using multiple
morphemes. For example, the word èñÒ» A

	
JJ
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A
	
¯

(fOsqynAkmwh1 – and we gave it to you to drink)
combines a conjunction, a verb, and three pronouns.
At another longitude, Arabic has three variants:
Classical Arabic (CA), Modern Standard Arabic
(MSA) and Dialectal Arabic (DA). While the
MSA is traditionally considered as the de facto

∗The work was done while the author was at QCRI
1Using Safe Buckwalter Arabic (SBA) encoding.

Figure 1: Data regimes of various pre-trained
Transformer models of Arabic

standard in the written medium and DA being
the predominantly spoken counterpart, this has
changed recently (Mubarak and Darwish, 2014;
Zaidan and Callison-Burch, 2014; Durrani et al.,
2014). Due to the recent influx of Social Media
platforms, dialectal Arabic also enjoys a significant
presence in the written medium.

Transfer learning using contextualized
representations in pre-trained language models
have revolutionized the arena of downstream
NLP tasks. A plethora of transformer-based
language models, trained in dozens of languages
are uploaded every day now. Arabic is no
different. Several researchers have released and
benchmarked pre-trained Arabic transformer
models such as AraBERT (Antoun et al., 2020),
ArabicBERT (Safaya et al., 2020), CAMeLBERT
(Inoue et al., 2021), MARBERT (Abdul-Mageed
et al., 2020) and QARIB (Abdelali et al., 2021) etc.
These models have demonstrated state-of-the-art
performance on many tasks as well as their
ability to learn salient features for Arabic. One
of the main differences among these models is
the genre and amount of Arabic data they are
trained on. For example, AraBERT was trained
only on the MSA (Modern Standard Arabic),



ArabicBERT additionally used DA during training,
and CAMelBERT-mix used a combination of all
types of Arabic text for training. Multilingual
models such as mBERT and XLM are mostly
trained on Wikipedia and CommonCrawl data
which is predominantly MSA (Suwaileh et al.,
2016). Figure 1 summarizes the training data
regimes of these models.

This large variety of Arabic pre-trained
models motivates us to question how their
representations encode various linguistic
concepts? To this end, we present the first
work on interpreting deep Arabic models.
We experiment with nine transformer models
including: five Arabic BERT models, Arabic
ALBERT, Arabic Electra, and two multilingual
models (mBERT and XLM). We analyze their
representations using MSA and dialectal parts-
of-speech tagging and dialect identification tasks.
This allows us to compare the representations of
Arabic transformer models using tasks involving
different varieties of Arabic dialects.

We analyze representations of the network at
layer-level and at neuron-level using diagnostic
classifier framework (Belinkov et al., 2017; Hupkes
et al., 2018). The overall idea is to extract feature
vectors from the learned representations and train
probing classifiers towards understudied auxiliary
tasks (of predicting morphology or identifying
dialect). We additionally use the Linguistic
Correlation Analysis method (Dalvi et al., 2019a;
Durrani et al., 2020) to identify salient neurons
with respect to a downstream task. Our results
show that:

Network and Layer Analysis

• Lower and middle layers capture word
morphology

• The long-range contextual knowledge
required to solve the dialectal identification is
preserved in the higher layers

Neuron Analysis

• The salient neurons with respect to a property
are well distributed across the network

• First (embedding) and last layers of the
models contribute a substantial amount of
salient neurons for any downstream task

• The neurons of embedding layer layer are
polysemous in nature while the neurons of
middle layers specializes in specific properties

MSA vs. Dialect

• Although dialects of Arabic are closely related
to MSA, the pre-trained models trained using
MSA only do not implicitly learn nuances of
dialectal Arabic

2 Methodology

Our methodology is based on the class of
interpretation methods called as the Probing
Classifiers. The central idea is to extract the
activation vectors from a pre-trained language
model as static features. These activation vectors
are then trained towards the task of predicting
a property of interest, a linguistic task that we
would like to probe the representation against. The
underlying assumption is that if the classifier can
predict the property, the representations implicitly
encode this information. We train layer (Belinkov
et al., 2020) and neuron probes (Durrani et al.,
2022) using logistic-regression classifiers.

Formally, consider a pre-trained neural language
model M with L layers: {l1, l2, . . . , lL}. Given
a dataset D = {w1, w2, ..., wN} with a
corresponding set of linguistic annotations T =
{tw1 , tw2 , ..., twN }, we map each word wi in the
data D to a sequence of latent representations:
D M7−→ z = {z1, . . . , zN}. The layer-wise probing
classifier is trained by minimizing the following
loss function:

L(θ) = −
∑
i

logPθ(twi |wi)

where Pθ(twi |wi) = exp(θl·zi)∑
l′ exp(θl′ ·zi)

is the
probability that word i is assigned property twi .

For neuron analysis, we use Linguistic
Correlation Analysis (LCA) as described in (Dalvi
et al., 2019a). LCA is also based on the probing
classifier paradigm. However, they used elastic-net
regularization (Zou and Hastie, 2005) that enables
the selection of both focused and distributed
neurons. The loss function is as follows:

L(θ) = −
∑
i

logPθ(twi |wi) + λ1‖θ‖1 + λ2‖θ‖22

The regularization parameters λ1 and λ2 are tuned
using a grid-search algorithm. The classifier
assigns weight to each feature (neuron) which
serves as their importance with respect to a class
like Noun. We ranked the neurons based on the



absolute weights for every class. We select salient
neurons for the task such as POS by iteratively
selecting top neurons of every class.

A minimum set of neurons is identified by
iteratively selecting top neurons that achieves
classification performance comparable (within a
certain threshold) to the Oracle – accuracy of
the classifier trained using all the features in the
network.

Data Size Tokens Vocab Type

AraBERT 23GB 2.7B 64K MSA
ArabicBERT 95GB 8.2B 32K MSA
CAMeLBERT 167B 17.3B 30K MSA/CA/DA
MARBERT 128GB 15.6B 100K MSA/DA
mBERT - 1.5B 110K MSA
QARiB 127GB 14.0B 64K MSA/DA
AraELECTRA 77GB 8.6B 64K MSA
ALBERT - 4.4B 30K MSA
XLM 2.5TB - 250K MSA

Table 1: Pretrained Models data and statistics.

3 Experimental Setup

In this section, we describe our experimental setup
including the Arabic transformer models, probing
tasks that we have used to carry the analysis and
the classifier settings.

3.1 Pre-trained Models
We select a number of Arabic transformer models,
trained using various varieties of Arabic and based
on different architectures. Table 1 provides a
summary of these models. In the following, we
describe each model and the dataset used for their
training.

AraBERT was trained using a combination of 70
million sentences from Arabic Wikipedia Dumps,
1.5B words Arabic Corpus (El-khair, 2016) and the
Open Source International Arabic News Corpus
(OSIAN) from (Zeroual et al., 2019). The final
corpus contained mostly MSA news from different
Arab regions.

ArabicBERT Safaya et al. (2020) pretrained a
BERT model using a concatenation of Arabic
version of OSCAR (Ortiz Suárez et al., 2019), a
filtered subset from Common Crawl and a dump of
Arabic Wikipedia totalling to 8.2B words.

CAMeLBERT Inoue et al. (2021) combined a
mixed collection of MSA, Dialectal and Classical
Arabic texts with a total of 17.3B tokens. They used
the data to pre-train CAMeLBERT-Mix model.

MARBERT Abdul-Mageed et al. (2020)
combined a dataset of 1B tweets that covering
mostly Arabic dialects and Arabic Gigaword 5th
Edition,2 OSCAR (Ortiz Suárez et al., 2019),
OSIAN (Zeroual et al., 2019) and Wikipedia dump
totally up to 15.6B tokens.

QARIB Abdelali et al. (2021) combined Arabic
Gigaword Fourth Edition,3 1.5B words Arabic
Corpus (El-khair, 2016), the Arabic part of Open
Subtitles (Lison and Tiedemann, 2016) and 440M
tweets collected between 2012 and 2020. The data
was processed using Farasa (Abdelali et al., 2016).

ALBERT used a subset of OSCAR (Ortiz Suárez
et al., 2019) and a dump of Wikipedia, selecting
around 4.4 Billion words (Safaya, 2020). The
model differs from BERT using factorized
embedding and repeating layers which results in a
small memory footprint (Lan et al., 2020).

AraELECTRA ELECTRA, model Clark et al.
(2020) is trained to distinguish "real" vs "fake"
input tokens generated by another neural network.
The Arabic ELECTRA was trained on 77GB of
data combining OSCAR dataset, Arabic Wikipedia
dump, the 1.5B words Arabic Corpus, the OSIAN
Corpus and Assafir news articles (Antoun et al.,
2021). Different than other models, AraELECTRA
uses a hidden layer size of 256 while all other
models have 768 neurons per layer.

Multilingual BERT Google research released
BERT multilingual base model pretrained on the
concatenation of monolingual Wikipedia corpora
from 104 languages with a shared word piece
vocabulary of 110K.

XLM Conneau et al. (2020) is a multi-
lingual version of RoBERTa, trained on 2.5TB
CommonCrawl data. The model is trained on 100
different languages.

3.2 Probing Tasks
We consider morphological tagging on a variety
of Arabic dialects and dialectal identification tasks
to analyze and compare the models. Below we
describe the task details.

POS Tagging on Arabic Treebank (ATB): The
Arabic Treebank Part1 v2.0 and Part3 v1.0 with a
total of 515k tokens labeled at the segment level
with POS tags. The data is a combination of

2LDC Catalogue LDC2011T11
3LDC Catalogue LDC2009T30
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Gloss. My little brother jumped and brought me water !
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Labels ADV NOUN ADJ PART ADV NOUN PUNC CONJ ADV NOUN ADJ PART PART ADV NOUN
SBA fy nAs mnAH mA fy mtln , w fy nAs mnyH Ally mA fy mtln

Gloss. There are good people who are unparalleled, and there are people that it is good they are unparalleled.
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SBA lh mjddA Oqwl mfqwsp Owy

Gloss. For him again I say (I am) very upset !
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Labels NOUN_PROP:MS PUNC:- PRON:1S PART:- VERB:P1S VERB:P1S NOUN:MS
SBA syf : AnA mA glTt qlt Sdq

Gloss. Saif: I wasn’t wrong, I said the truth.

Table 2: Examples of Arabic annotated text and their corresponding labels for each task.

newswire text from An-Nahar and Agence France
Presse corpus (Maamouri et al., 2004). The data is
labeled with 42 distinct tags.

Gumar POS Tagging on Gulf Arabic (GMR):
Khalifa et al.( 2020) compiled a collection of
15,225 sentences from eight different novels
written in the Emirati Arabic dialect from the
Gumar Corpus (Khalifa et al., 2018). The data
was manually annotated for tokenization, part-
of-speech, lemmatization, spelling adjustment,
English glosses and sentence level dialect
identification, using 169 tags.

Curras POS Tagging on Palestinian Arabic
dialect (CRS): Jarrar et al.(2017) collected around
5K sentences written in Palestinian Arabic dialect
from web blogs, Twitter and Facebook comments
and transcripts from a TV Shows Watan Aa Watar.
The sentences were manually annotated for part-
of-speech (POS), stem, prefix, suffix, lemma, and
gloss using 260 tags.

POS Multidialects (DIA): A total of 1.4k
tweets from four Arabic dialects, namely
Egyptian (EGY), Levantine (LEV), Gulf
(GLF), and Maghrebi (MGR). The tweets were
morphologically tagged (Samih et al., 2017) using
a reduced subset of 22 tags.

Dialect IDentification (DID): This task
is related to code switching and language
identification (LID) between MSA and Egyptian
dialect on social media content. The data
comprises intrasentential code switched sentences

(mixing languages between utterances) used for the
Second Shared Task on Language Identification in
Code-Switched Data. The data contains over 11k
sentences, where each token in the sentences is
labeled with one of the eight labels:lang1, lang2,
fw, mixed, unk, ambiguous, other and named
entities (ne) (Molina et al., 2016).

Figure2 shows examples for each of the probing
tasks with their respective labels.

3.3 Post-hoc Classifier

We used the NeuroX toolkit (Dalvi et al., 2019b)
to perform our analysis. Our probe is a linear
classifier with categorical cross-entropy loss,
optimized by Adam (Kingma and Ba, 2014). For
neuron-analysis, the classifier additionally used the
elastic-net regularization (Zou and Hastie, 2005).
The regularization weights are trained using grid-
search algorithm. Training is run with shuffled
mini-batches of size 512 and stopped after 10
epochs. Linear classifiers are a popular choice
in analyzing deep NLP models due to their better
interpretability (Qian et al., 2016). Hewitt and
Liang (2019) have also shown linear probes to have
higher Selectivity, a property deemed desirable for
more interpretable probes. We perform control task
experiments to ensure that our probes are reflective
of the linguistic knowledge that representations
capture. For sub-word based models, we use the
average activation value (Durrani et al., 2019) to
be the representative of the word. We additionally



Task ATB CRS DIA DID GMR
Avg. Acc.

Model Acc. Sel. Acc. Sel. Acc. Sel. Acc. Sel. Acc. Sel.
AraBERT 93.9 48.1 77.3 22.1 79.0 58.1 84.7 37.4 90.4 06.4 85.06
ArabicBERT 95.2 48.2 80.5 24.7 83.6 50.4 91.2 34.7 91.6 05.1 88.43
CAMelBERT 95.8 39.2 82.9 23.6 86.0 37.2 92.0 21.3 93.0 05.6 89.94
MARBERT 95.6 51.4 84.2 27.5 84.8 48.8 93.1 33.9 93.4 07.3 90.22
QARiB 95.8 50.6 84.0 28.9 85.4 45.0 93.3 28.8 93.3 06.7 90.38
mBERT 94.4 48.8 73.7 22.7 77.6 58.4 81.7 36.3 88.0 04.4 83.08
AraELECTRA 94.4 46.9 72.7 28.4 79.0 56.2 87.9 34.3 89.1 08.1 84.64
ALBERT 95.2 40.9 77.0 28.3 82.1 39.8 88.3 27.1 90.2 09.4 86.56
XLM 95.7 43.7 75.0 20.6 78.9 42.1 86.7 29.3 88.2 06.0 84.90

Table 3: Classifier performance on Test sets using top layers

Task ATB CRS DIA DID GMR
Threshold δ 5% 10% 10% 7% 5%
Model Acc. Sel. Acc. Sel. Acc. Sel. Acc. Sel. Acc. Sel.
AraBERT 93.4 48.8 82.1 33.5 79.3 39.9 86.0 21.5 89.9 18.1
ArabicBERT 94.0 50.8 83.6 31.6 83.3 44.9 90.1 26.3 91.0 12.5
CAMelBERT 94.9 51.1 86.1 37.0 85.1 47.5 91.0 27.2 92.6 22.6
MARBERT 94.5 51.6 86.2 30.0 84.2 48.5 91.6 29.2 92.3 15.0
QARiB 95.0 52.7 86.1 31.0 83.6 46.7 91.7 30.0 92.4 11.6
mBERT 94.1 48.5 78.4 33.1 77.5 37.7 83.2 17.0 87.6 13.4
AraELECTRA 91.2 53.3 79.0 33.9 79.4 45.0 88.2 25.6 87.6 13.1
ALBERT 94.7 56.8 80.7 33.7 81.8 47.4 88.5 25.9 89.8 12.0
XLM 95.3 51.8 78.5 27.9 79.0 44.5 86.5 21.7 88.0 12.4

Table 4: Classifier performance on Test sets using top neurons as features

normalize the embeddings using znorm as it has
shown to provide better ranking of neurons with
respect to a property (Sajjad et al., 2021a).

4 Analysis and Discussion

Our goal is to carry out a comparative investigation
of the knowledge encoded in different Arabic
transformer models. First we compare the
representations in terms of how much linguistic
information is preserved in the network using the
overall accuracy on the understudied auxiliary
tasks. Then we analyze how such information is
preserved across individual layers of the model.
Lastly, we analyze the distribution of neurons
across the model with respect to these tasks.

4.1 Network Analysis

We use the feature vectors4 generated from
different dialects of Arabic to train post-
hoc classifiers towards the task of predicting
morphology in these dialects or predicting the
dialect themselves. Table 3 gives accuracy
of the classifiers on different dialectal tasks.
Firstly, the high accuracy numbers show that

4We concatenated the features from all layers of the
network to train the classifier.

the representations learn non-trivial linguistic
knowledge. We found all the models to do
well on the task of predicting MSA morphology
unsurprisingly, since all these models have
been trained on a large amount of MSA data.
Contrastingly, the performance varied a lot on
the dialectal tasks with different models giving
optimal performance on different dialects. Note
that the models that were trained only using MSA
performed much worse despite the fact that MSA
and dialect have a significant vocabulary overlap.
This shows that to capture specific dialectal
nuances these transformer models need to train
on dialectal data. Comparing the models, we
found dialectal models (QARiB, MARBERT
and CAMeLBERT) to perform considerably well
across all the tasks. Lastly the high selectivity
numbers in Table 3 validate the fact that our
classifiers are not memorizing the tasks and are
a true reflection of the knowledge captured within
the underlying representations.

4.2 Layer-wise Analysis
We now analyze how the understudied linguistic
knowledge is distributed across the layers. We
train a classifier for each probing task using
representations of individual layers as features. The



(a) CRS (b) DID

Figure 2: Layer-wise accuracy for different selected tasks.

performance of the classifier serves as a proxy
to the amount of task knowledge learned in each
layer representation. Figure 2 provides per-layer
accuracy for the CRS (morphological tagging for
Palestinian dialect) and DID (Dialect Identification)
tasks.5 We found that the word morphology is
captured predominantly in the lower layers of
the model, retained in the middle layers before
declining in the final layers. The higher layers
are reserved for complex phenomenon such
as capturing non-local dependencies. This is
confirmed from our DID results. Identifying dialect
requires learning non-local dependencies and
sentence level phenomenon to accurately predict
the dialect. For example, a lexical form can belong
to two different dialects depending on the context to
disambiguate the dialect of the word. For example,
�
ék. Ag “HAjp” (thing or need) is MSA in the

context: 	
à
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“mfyc HAjp OSEb mn” (there is no thing difficult
than). The contextual knowledge is essential to
disambiguate in such cases.

4.3 Neurons Analysis
We now study how the information is spread
across neurons instead of layer by carrying a fine-
grained analysis. We discover neurons that learn
a particular linguistic property using LCA (Dalvi
et al., 2019a) and analyze: i) how many neurons
can sufficiently capture a concept, ii) how these
neurons are distributed across the layers. LCA
provides a ranked list of neurons with respect to
the understudied property. We select a minimumal

5We limit the presentation to fewer models for clarity
purposes. Our observations consistently hold for all dialectal
tasks. See Appendix for complete results.

set of top neurons from the ranked list that yield
close to the oracle performance.6

Minimal Neurons: We found 5% neurons to be
optimal for ATB, and GMR; while 10% for both
CRS and DIA tasks, due to their more granular
tag-set. For the DID task, we found 7% neurons
to be optimal (Table 4 shows results – please
also see Appendix for a more detailed result
using different neuron thresholds). Our results
show that a small subset of features can achieve
close to oracle performance. This entails that
re-trainable features are available in the network
as also shown by Dalvi et al. (2020). Such
a finding entails interesting frontier in efficient
feature-based transfer learning, which is considered
as a viable alternative to the traditional fine-tuning
based transfer learning (Peters et al., 2019; Durrani
et al., 2021; Alrowili and Shanker, 2021).

Neuron Distribution: Let us now turn our
attention towards how these neurons are distributed
in the network. In Figure 3 we plot salient
neurons across the layers (See Appendix for all
the tasks). A dominant pattern that we observed
was that the embedding and final layers of the
model consistently contribute the most number
of salient neurons. This entails that while the
neurons in middle layers capture intricate details
of the task, the input and output layers of the
model that are closer to the actual words possess
most lexical information required to for accurate
predictions. The model uses the embedding layer
to focus on more localized information and final
layers to capture contextual dependencies. An
exception to this overall pattern was the ALBERT

6Accuracy when using the entire network or best layer,
whichever is higher.



(a) ATB (b) DIA (c) DID

Figure 3: Distribution of selected neurons across the layers

model, where the embedding layer has close
to zero contribution in the salient neurons and
relatively higher number of neurons from the initial
contextualized layers. Recall that ALBERT has a
different architecture where parameters are shared
across the encoder layers. Moreover the model
factorizes the embedding layer. These architectural
choices perhaps explain the difference of neuron
distribution pattern. A detailed analysis of word
embedding layers using lexical tasks such as word
similarity and word relatedness is required to fully
understand this.

Property Distribution: We have seen how
salient neurons distribute across the network. Now
we analyze how these neurons distribute across
sub-properties within a task. A morphological
tagging task for example is composed of different
properties such as Noun, Verb, Adjective etc. In
Figure 4 we plot the number of salient neurons
required to capture different properties on the task
of predicting classes in the ATB task. We observed
that closed class categories such as personal
pronoun (PRP) are localized to fewer neurons,
where as the open-class words such as past-
tense verbs (VBD) that exhibit a variety of roles
in different contexts require a large number of
neurons. We found this observation to be true
for all the models across different dialectal tasks
(Please see Appendix for more results).

Layer-wise Property Distribution: We also
analyzed how individual properties are encoded
across the layers in the network, Do they have
similar neuron distribution pattern or are the
specific properties learned more on higher layers
than lower layers and vice versa? Figure 5 shows
the distribution of selected neurons of ALBERT,
AraBERT and QARiB for a few properties. We
observed a very consistent pattern to the overall

neuron distribution that we saw in Figure 3.
For most of the properties salient neurons were
contributed from the embedding and final layers,
and middle layers contributed less than 20 neurons.
Another interesting pattern to be noted is that noun
neurons were more prevalent in the embedding
layer (layer 1-2 for ALBERT) but verb neurons
were dominantly found in the final layers. Verbs
are considered to be structural center in linguistic
theories as they connect to all other syntactic
units in a sentence (Hudson, 2010). This further
reinforces our result that the higher layers of the
model capture long distance dependencies.

Polysemous Neurons: Neurons are multi-
variate in nature and may capture multiple
concepts. For example Bau et al. (2019)
discovered switch neurons that activate positively
for present-tense verbs and negatively for the
past-tense verbs in LSTM encoders. We also
analyzed the overlaps between salient neurons
that learn different linguistic properties in an
attempt to discover polysemous neurons. Figure 6
shows the overlap of neurons across properties
in different layers in the QARiB model. The
zeros means that none of the top neurons between
the properties overlap. Note that there is a high
concentration of overlapping neurons between
determiners (DT), adjectives (JJ) and nouns (NN)
or between determiners and verbs. The intersection
was around 54% in the case of Determiner “DT”
and Noun “NN”. We believe this is an artifact of
concatenative morphology that Arabic exhibits,
where it is common for affixes such as preposition
or determiner to join with nouns or adjectives to
form composite constructions. We also observed
that the number of polysemous neurons exist more
dominantly in the embedding layer. Higher layers
(Exp. Figure 6e and 6f) show less shared and
overlapping neurons.



Figure 4: Distribution of neurons per property (ATB)

(a) ALBERT (b) AraBERT (c) QARiB

Figure 5: Property-wise distribution of neurons across the layers in ATB

(a) Layer 0 (b) Layer 1 (c) Layer 5

(d) Layer 6 (e) Layer 11 (f) Layer 12

Figure 6: QARiB: Neurons overlap across the ATB properties



5 Related Work

Work done on interpreting deep NLP models
can be broadly classified into Concept Analysis
and Attribution Analysis. The former thrives
on post-hoc decomposability, where we analyze
representations to uncover linguistic (and non-
linguistic) phenomenon that are captured as the
network is trained towards any NLP task (Conneau
et al., 2018; Liu et al., 2019; Tenney et al.,
2019; Sajjad et al., 2022; Dalvi et al., 2022)
and the latter characterize the role of model
components and input features towards a specific
prediction (Linzen et al., 2016; Gulordava et al.,
2018; Marvin and Linzen, 2018). Our work
falls into the former category. We carry out
a layer and neuron-wise analysis on the Arabic
transformer models. We used Diagnostic classifiers
(Belinkov et al., 2017) to train layer and neuron-
wise probes towards predicting linguistic properties
of interest. To the best of our knowledge this is
the first work on analyzing Arabic transformer
models. Suau et al. (2020) used max-pooling
to identify relevant neurons (aka Expert units)
in pre-trained models, with respect to a specific
concept (for example word-sense). Mu and
Andreas (2020) proposed a Masked-based Corpus
Selection method to determine important neurons
with respect to a concept. See Sajjad et al. (2021b)
for a comprehensive survey of these techniques.
We used the Linguistic Correlation Analysis of
Dalvi et al. (2019a) to perform neuron analysis.

6 Conclusion and Future Work

In this paper we carry out a post-hoc analysis on
a number of Arabic transformer models using five
linguistic tasks. Our results enlighten interesting
insights: i) neural networks learn non-trivial
amount of linguistic knowledge with lower and
middle layers capturing word morphology and
higher layers learning more universal phenomenon,
ii) we found that salient neurons are distributed
across the network, but some layers contribute
more salient neurons towards a task, iii) we found
some neurons to be polysemous in nature while
other capturing very specialized properties, iv)
lastly we showed that MSA-based models do not
capture dialectal nuances despite having a large
overlap with dialects. For future work, we aim
to expand this analysis to include more tasks and
explore related languages such as the families of
Semitic, Germanic or Latin languages.
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A Appendix

Table 5 shows the performance loss for different thresholds. Highlighted thresholds were selected based
on the 1% average performance loss. For the case of DIA, some overfitting is noticeable. Such case is
reported in literature where the classifiers with large contextualized vectors tend to overfit when supervised
data is insufficient (Hameed, 2018).
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ATB

3.00% 0.914 0.915 0.929 0.916 0.924 0.924 0.868 0.935 0.938
5.00% 0.934 0.940 0.949 0.945 0.950 0.941 0.912 0.947 0.953
7.00% 0.939 0.949 0.957 0.952 0.957 0.945 0.934 0.953 0.957
10.00% 0.943 0.953 0.960 0.957 0.961 0.947 0.945 0.954 0.960
20.00% 0.945 0.956 0.960 0.958 0.962 0.948 0.954 0.953 0.961
50.00% 0.940 0.953 0.955 0.954 0.958 0.941 0.957 0.948 0.955
100.00% 0.937 0.954 0.957 0.955 0.955 0.938 0.954 0.947 0.953
3.00% 0.769 0.767 0.803 0.784 0.787 0.725 0.658 0.763 0.714
5.00% 0.798 0.809 0.834 0.831 0.828 0.757 0.723 0.791 0.755
7.00% 0.791 0.811 0.842 0.840 0.845 0.755 0.789 0.782 0.761
10.00% 0.821 0.836 0.861 0.862 0.861 0.784 0.790 0.807 0.785
20.00% 0.822 0.844 0.868 0.864 0.866 0.796 0.824 0.809 0.797
50.00% 0.804 0.827 0.858 0.857 0.861 0.776 0.825 0.792 0.792

CRS

100.00% 0.788 0.824 0.839 0.845 0.847 0.763 0.816 0.779 0.780
3.00% 0.753 0.780 0.798 0.766 0.783 0.732 0.683 0.779 0.753
5.00% 0.774 0.812 0.835 0.809 0.820 0.748 0.747 0.808 0.767
7.00% 0.788 0.831 0.847 0.830 0.834 0.757 0.776 0.815 0.783
10.00% 0.793 0.833 0.851 0.842 0.836 0.775 0.794 0.818 0.790
20.00% 0.794 0.840 0.857 0.850 0.851 0.768 0.809 0.814 0.806
50.00% 0.784 0.832 0.840 0.844 0.847 0.752 0.814 0.798 0.799

DIA

100.00% 0.770 0.818 0.831 0.826 0.829 0.734 0.803 0.790 0.776
3.00% 0.829 0.876 0.879 0.879 0.885 0.809 0.840 0.864 0.833
5.00% 0.854 0.892 0.897 0.907 0.908 0.821 0.868 0.881 0.860
7.00% 0.860 0.901 0.910 0.916 0.917 0.832 0.882 0.885 0.865
10.00% 0.872 0.905 0.914 0.918 0.920 0.837 0.887 0.892 0.878
20.00% 0.880 0.908 0.917 0.922 0.923 0.846 0.900 0.893 0.878
50.00% 0.876 0.902 0.909 0.915 0.915 0.840 0.906 0.888 0.871

DID

100.00% 0.864 0.892 0.896 0.903 0.903 0.823 0.906 0.877 0.858
3.00% 0.881 0.891 0.913 0.907 0.912 0.856 0.833 0.885 0.856
5.00% 0.899 0.910 0.926 0.923 0.924 0.876 0.876 0.898 0.880
7.00% 0.913 0.925 0.929 0.936 0.934 0.892 0.892 0.909 0.891
10.00% 0.908 0.920 0.931 0.930 0.929 0.890 0.901 0.905 0.897
20.00% 0.907 0.920 0.926 0.929 0.925 0.891 0.914 0.904 0.898
50.00% 0.899 0.909 0.918 0.919 0.915 0.876 0.911 0.889 0.884

GMR

100.00% 0.890 0.900 0.910 0.909 0.908 0.865 0.901 0.880 0.878

Table 5: Performance per models using different threshold δ

(a) ATB (b) DIA (c) GMR

Figure 7: Layer-wise accuracy for ATB, DIA, GMR tasks.
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Figure 8: Distribution of neurons per property

(a) ATB (b) CRS (c) DIA

(d) DID (e) GMR

Figure 9: Distribution of selected neurons across the layers


