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Abstract
While neural machine translation (NMT)
models provide improved translation qual-
ity in an elegant framework, it is less
clear what they learn about language. Re-
cent work has started evaluating the qual-
ity of vector representations learned by
NMT models on morphological and syn-
tactic tasks. In this paper, we investigate
the representations learned at different lay-
ers of NMT encoders. We train NMT sys-
tems on parallel data and use the mod-
els to extract features for training a clas-
sifier on two tasks: part-of-speech and se-
mantic tagging. We then measure the per-
formance of the classifier as a proxy to
the quality of the original NMT model for
the given task. Our quantitative analysis
yields interesting insights regarding repre-
sentation learning in NMT models. For in-
stance, we find that higher layers are bet-
ter at learning semantics while lower lay-
ers tend to be better for part-of-speech tag-
ging. We also observe little effect of the
target language on source-side representa-
tions, especially in higher quality models.1

1 Introduction
Neural machine translation (NMT) offers an el-
egant end-to-end architecture, while at the same
time improving translation quality. However, little
is known about the inner workings of these models
and their interpretability is limited. Recent work
has started exploring what kind of linguistic infor-
mation such models learn on morphological (Vy-
lomova et al., 2016; Belinkov et al., 2017; Dalvi
et al., 2017) and syntactic levels (Shi et al., 2016;
Sennrich, 2017).

1Our code is available at http://github.com/
boknilev/nmt-repr-analysis.

One observation that has been made is that
lower layers in the neural MT network learn
different kinds of information than higher lay-
ers. For example, Shi et al. (2016) and Belinkov
et al. (2017) found that representations from lower
layers of the NMT encoder are more predictive
of word-level linguistic properties like part-of-
speech (POS) and morphological tags, whereas
higher layer representations are more predictive of
more global syntactic information. In this work,
we take a first step towards understanding what
NMT models learn about semantics. We evaluate
NMT representations from different layers on a se-
mantic tagging task and compare to the results on
a POS tagging task. We believe that understand-
ing the semantics learned in NMT can facilitate
using semantic information for improving NMT
systems, as previously shown for non-neural MT
(Chan et al., 2007; Liu and Gildea, 2010; Gao and
Vogel, 2011; Wu et al., 2011; Jones et al., 2012;
Bazrafshan and Gildea, 2013, 2014).

For the semantic (SEM) tagging task, we use
the dataset recently introduced by Bjerva et al.
(2016). This is a lexical semantics task: given a
sentence, the goal is to assign to each word a tag
representing a semantic class. The classes cap-
ture nuanced meanings that are ignored in most
POS tag schemes. For instance, proximal and dis-
tal demonstratives (e.g., this and that) are typi-
cally assigned the same POS tag (DT) but receive
different SEM tags (PRX and DST, respectively),
and proper nouns are assigned different SEM tags
depending on their type (e.g., geopolitical entity,
organization, person, and location). As another
example, consider pronouns like myself, yourself,
and herself. They may have reflexive or emphasiz-
ing functions, as in (1) and (2), respectively:

(1) Sarah bought herself a book

(2) Sarah herself bought a book

http://github.com/boknilev/nmt-repr-analysis
http://github.com/boknilev/nmt-repr-analysis


Figure 1: Illustration of our approach, after (Belinkov et al., 2017): (i) NMT system trained on parallel
data; (ii) features extracted from pre-trained model; (iii) classifier trained using the extracted features.
We train classifiers on either SEM or POS tagging using features from different layers (here: layer 2).

In these examples, herself has the same POS tag
(PRP) but different SEM tags: REF for a reflexive
function and EMP for an emphasizing function.

Capturing semantic distinctions of this sort can
be important for producing accurate translations.
For instance, example (1) would be translated to
Spanish with the reflexive pronoun se, whereas
(2) would be translated with the intensifier misma.
Thus, a translation system needs to learn different
representations of herself in the two sentences.

In order to assess the quality of the representa-
tions learned by NMT models, we adopt the fol-
lowing methodology from Shi et al. (2016) and
Belinkov et al. (2017). We first train an NMT sys-
tem on parallel data. Given a sentence, we extract
representations from the pre-trained NMT model
and train a word-level classifier to predict a tag
for each word. Our assumption is that the perfor-
mance of the classifier reflects the quality of the
representation for the given task.

We compare POS and SEM tagging quality with
representations from different layers or from mod-
els trained on different target languages, while
keeping the English source fixed. Our results yield
useful insights on representation learning in NMT:

• Consistent with previous work, we find that
lower layer representations are usually better
for POS tagging. However, we also find that
representations from higher layers are better
at capturing semantics, even though these are
word-level labels. This is especially true with
tags that are more semantic in nature such as
discourse functions or noun concepts.

• In contrast to previous work, we observe little
effect of the target language on source-side
representation. We find that the effect of tar-
get language diminishes as the size of data
used to train the NMT model increases.

2 Methodology

Given a parallel corpus of source and target sen-
tence pairs, we train an NMT system with a stan-
dard sequence-to-sequence model with attention
(Bahdanau et al., 2014; Sutskever et al., 2014). Af-
ter training the NMT system, we fix its parameters
and treat it as a feature generator for our classifi-
cation task. Let hk

j denote the output of the k-th
layer of the encoder at the j-th word. Given an-
other corpus of sentences, where each word is an-
notated with a label, we train a classifier that takes
hk
j as input features and maps words to labels. We

then measure the performance of the classifier as a
way to evaluate the quality of the representations
generated by the NMT system. By extracting dif-
ferent NMT features we can obtain a quantitative
comparison of representation learning quality in
the NMT model for the given task. For instance,
we may vary k in order to evaluate representations
learned at different encoding layers.

In our case, we first train NMT systems on par-
allel corpora of an English source and several tar-
get languages. Then we train separate classifiers
for predicting POS and SEM tags using the fea-
tures hk

j that are obtained from the English en-
coder and evaluate their accuracies. Figure 1 il-
lustrates the process.



3 Data and Experimental Setup

3.1 Data

MT We use the fully-aligned United Nations
corpus (Ziemski et al., 2016) for training NMT
models, which includes 11 million multi-parallel
sentences in six languages: Arabic (Ar), Chinese
(Zh), English (En), French (Fr), Spanish (Es), and
Russian (Ru). We train En-to-* models on the first
2 million sentences of the train set, using the offi-
cial train/dev/test split. This dataset has the benefit
of multiple alignment of the six languages, which
allows for comparable cross-linguistic analysis.

Note that the parallel dataset is only used for
training the NMT model. The classifier is then
trained on the supervised data (described next) and
all accuracies are reported on the English test sets.

Semantic tagging Bjerva et al. (2016) intro-
duced a new sequence labeling task, for tagging
words with semantic (SEM) tags in context. This
is a good task to use as a starting point for inves-
tigating semantics because: i) tagging words with
semantic labels is very simple, compared to build-
ing complex relational semantic structures; ii) it
provides a large supervised dataset to train on, in
contrast to most available datasets on word sense
disambiguation, lexical substitution, and lexical
similarity; and iii) the proposed SEM tagging task
is an abstraction over POS tagging aimed at being
language-neutral, and oriented to multi-lingual se-
mantic parsing, all relevant aspects to MT. We pro-
vide here a brief overview of the task and its as-
sociated dataset, and refer to (Bjerva et al., 2016;
Abzianidze et al., 2017) for more details.

The semantic classes abstract over redundant
POS distinctions and disambiguate useful cases
inside a given POS tag. Examples (1-2) above
illustrate how fine-grained semantic distinctions
may be important for generating accurate trans-
lations. Other examples of SEM tag distinctions
include determiners like every, no, and some that
are typically assigned a single POS tag (e.g., DT in
the Penn Treebank), but have different SEM tags,
reflecting universal quantification (AND), negation
(NOT), and existential quantification (DIS), re-
spectively. The comma, whose POS tag is a punc-
tuation mark, is assigned different SEM tags rep-
resenting conjunction, disjunction, or apposition,
according to its discourse function. Proximal and
distant demonstratives (this vs. that) have different
SEM tags but the same POS tag. Named-entities,

Train Dev Test

POS
Sentences 38K 1.7K 2.3K
Tokens 908K 40K 54K

SEM
Sentences 42.5K 6.1K 12.2K
Tokens 937K 132K 266K

Table 1: Statistics of the part-of-speech and se-
mantic tagging datasets.

whose POS tag is usually a single tag for proper
nouns, are disambiguated into several classes such
as geo-political entity, location, organization, per-
son, and artifact. Other nouns are divided into
“role” entities (e.g., boxer) and “concepts” (e.g.,
wheel), a distinction reflecting existential consis-
tency: an entity can have multiple roles but cannot
be two different concepts.

The dataset annotation scheme includes 66 fine-
grained tags grouped in 13 coarse categories. We
use the silver part of the dataset; see Table 1 for
some statistics.

Part-of-speech tagging For POS tagging, we
simply use the Penn Treebank with the standard
split (parts 2-21/22/23 for train/dev/test); see Ta-
ble 1 for statistics. There are 34 POS tags.

3.2 Experimental Setup

Neural MT We use the seq2seq-attn
toolkit (Kim, 2016) to train 4-layered long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) attentional encoder-decoder NMT sys-
tems with 500 dimensions for both word embed-
dings and LSTM states. We compare both uni-
directional and bidirectional encoders and experi-
ment with different numbers of layers. Each sys-
tem is trained with SGD for 20 epochs and the
model with the best loss on the development set
is used for generating features for the classifier.

Classifier The classifier is modeled as a feed-
forward neural network with one hidden layer,
dropout (ratio of 0.5), a ReLU activation func-
tion, and a softmax layer onto the label set size.2

The hidden layer is of the same size as the in-
put coming from the NMT system (i.e., 500 di-
mensions). The classifier has no explicit access to
context other than the hidden representation gen-

2We use a non-linear classifier because previous work
found that it outperforms a linear classifier, while showing
very similar trends (Qian et al., 2016b; Belinkov et al., 2017).



MFT UnsupEmb Word2Tag

POS 91.95 87.06 95.55
SEM 82.00 81.11 91.41

Table 2: POS and SEM tagging accuracy with
baselines and an upper bound. MFT: most fre-
quent tag; UnsupEmb: classifier using unsuper-
vised word embeddings; Word2Tag: upper bound
encoder-decoder.

erated by the NMT system, which allows us to fo-
cus on the quality of the representation. We chose
this simple formulation as our goal is not to im-
prove the state-of-the-art on the supervised task,
but rather to analyze the quality of the NMT rep-
resentation for the task. We train the classifier for
30 epochs by minimizing the cross-entropy loss
using Adam (Kingma and Ba, 2014) with default
settings. Again, we use the model with the best
loss on the development set for evaluation.

Baselines and an upper bound we consider
two baselines: assigning to each word the most
frequent tag (MFT) according to the training set
(with the global majority tag for unseen words);
and training with unsupervised word embeddings
(UnsupEmb) as features for the classifier, which
shows what a simple task-independent distributed
representation can achieve. For the unsupervised
word embeddings, we train a Skip-gram nega-
tive sampling model (Mikolov et al., 2013) with
500 dimensional vectors on the English side of
the parallel data, to mirror the NMT word em-
bedding size. We also report an upper bound of
directly training an encoder-decoder on word-tag
sequences (Word2Tag), simulating what an NMT-
style model can achieve by directly optimizing for
the tagging tasks.

4 Results

Table 2 shows baseline and upper bound results.
The UnsupEmb baseline performs rather poorly
on both POS and SEM tagging. In comparison,
NMT word embeddings (Table 3, rows with k =
0) perform slightly better, suggesting that word
embeddings learned as part of the NMT model
are better syntactic and semantic representations.
However, the results are still below the most fre-
quent tag baseline (MFT), indicating that non-
contextual word embeddings are poor representa-
tions for POS and SEM tags.

k Ar Es Fr Ru Zh En

POS Tagging Accuracy

0 88.0∗ 87.9∗ 87.9∗ 87.8∗ 87.7∗ 87.4∗

1 92.4 91.9 92.1 92.1 91.5 89.4
2 91.9∗ 91.8 91.8 91.8∗ 91.3 88.3
3 92.0∗ 92.3∗ 92.1 91.6∗∗ 91.2∗ 87.9∗

4 92.1∗ 92.4∗ 92.5∗ 92.0 90.5∗ 86.9∗

SEM Tagging Accuracy

0 81.9∗ 81.9∗ 81.8∗ 81.8∗ 81.8∗ 81.2∗

1 87.9 87.7 87.8 87.9 87.7 84.5
2 87.4∗ 87.5∗ 87.4∗ 87.3∗ 87.2∗ 83.2∗

3 87.8 87.9∗ 87.9∗∗ 87.3∗ 87.3∗ 82.9∗

4 88.3∗ 88.6∗ 88.4∗ 88.1∗ 87.7∗ 82.1∗

BLEU

32.7 49.1 38.5 34.2 32.1 96.6

Table 3: SEM and POS tagging accuracy using
features from the k-th encoding layer of 4-layered
NMT models trained with different target lan-
guages. “En” column is an English autoencoder.
BLEU scores are given for reference. Statistically
significant differences from layer 1 are shown at
p < 0.001(∗) and p < 0.01(∗∗). See text for de-
tails.

4.1 Effect of network depth

Table 3 summarizes the results of training clas-
sifiers to predict POS and SEM tags using fea-
tures extracted from different encoding layers of 4-
layered NMT systems.3 In the POS tagging results
(first block), as the representations move above
layer 0, performance jumps to around 91–92%.
This is above the UnsupEmb baseline but only on
par with the MFT baseline (Table 2). We note that
previous work reported performance above a ma-
jority baseline for POS tagging (Shi et al., 2016;
Belinkov et al., 2017), but used a weak global ma-
jority baseline (all words are assigned a single tag)
whereas here we compare with a stronger baseline
that assigns to each word the most frequent tag ac-
cording to the training data. The results are also
far below the Word2Tag upper bound (Table 2).

Comparing layers 1 through 4, we see that in
3/5 target languages (Ar, Ru, Zh), POS tagging
accuracy peaks at layer 1 and does not improve

3The results given are with a unidirectional encoder; in
section 4.5 we compare with a bidirectional encoder and ob-
serve similar trends.



at higher layers, with some drops at layers 2 and
3. In 2/5 cases (Es, Fr) the performance is higher
at layer 4. This result is partially consistent with
previous findings regarding the quality of lower
layer representations for the POS tagging task (Shi
et al., 2016; Belinkov et al., 2017). One possible
explanation for the discrepancy when using dif-
ferent target languages is that French and Span-
ish are typologically closer to English compared
to the other languages. It is possible that when the
source and target languages are more similar, they
share similar POS characteristics, leading to more
benefit in using upper layers for POS tagging.

Turning to SEM tagging (Table 3, second
block), representations from layers 1 through 4
boost the performance to around 87-88%, far
above the UnsupEmb and MFT baselines. While
these results are below the Word2Tag upper bound
(Table 2), they indicate that NMT representations
contain useful information for SEM tagging.

Going beyond the 1st encoding layer, represen-
tations from the 2nd and 3rd layers do not con-
sistently improve semantic tagging performance.
However, representations from the 4th layer lead
to significant improvement with all target lan-
guages except for Chinese. Note that there is a
statistically significant difference (p < 0.001) be-
tween layers 0 and 1 for all target languages, and
between layers 1 and 4 for all languages except for
Chinese, according to the approximate randomiza-
tion test (Padó, 2006).

Intuitively, higher layers have a more global
perspective because they have access to higher
representations of the word and its context, while
lower layers have a more local perspective. Layer
1 has access to context but only through one hid-
den layer which may not be sufficient for capturing
semantics. It appears that higher representations
are necessary for learning even relatively simple
lexical semantics.

Finally, we found that En-En encoder-decoders
(that is, English autoencoders) produce poor rep-
resentations for POS and SEM tagging (last col-
umn in Table 3). This is especially true with
higher layer representations (e.g., around 5% be-
low the MT models using representations from
layer 4). In contrast, the autoencoder has excellent
sentence recreation capabilities (96.6 BLEU). This
indicates that learning to translate (to any foreign
language) is important for obtaining useful repre-
sentations for both tagging tasks.

Ar Es Fr Ru Zh En

POS 88.7 90.0 89.6 88.6 87.4 85.2

SEM 85.3 86.1 85.8 85.2 85.0 80.7

Table 4: SEM and POS tagging accuracy using
features extracted from the 4th NMT encoding
layer, trained with different target languages on a
smaller parallel corpus (200K sentences).

4.2 Effect of target language

Does translating into different languages make the
NMT system learn different source-side represen-
tations? In previous work (Belinkov et al., 2017),
we found a fairly consistent effect of the target lan-
guage on the quality of encoder representations for
POS and morphological tagging, with differences
of ∼2-3% in accuracy. Here we examine if such
an effect exists in both POS and SEM tagging.

Table 3 also shows results using features ob-
tained by training NMT systems on different tar-
get languages (the English source remains fixed).
In both POS and SEM tagging, there are very
small differences with different target languages
(∼0.5%), except for Chinese which leads to
slightly worse representations. While the differ-
ences are small, they are mostly statistically sig-
nificant. For example, at layer 4, all the pairwise
comparisons with different target languages are
statistically significant (p < 0.001) in SEM tag-
ging, and all except for two comparisons (Ar vs.
Ru and Es vs. Fr) are significant in POS tagging.

The effect of target language is much smaller
than that reported in (Belinkov et al., 2017) for
POS and morphological tagging. This discrepancy
can be attributed to the fact that our NMT systems
in the present work are trained on much larger cor-
pora (10x), so it is possible that some of the differ-
ences disappear when the NMT model is of better
quality. To verify this, we trained systems using
a smaller data size (200K sentences), comparable
to the size used in (Belinkov et al., 2017). The re-
sults are shown in Table 4. In this case, we observe
a variance in classifier accuracy of 1-2%, based on
target language, which is consistent with our ear-
lier findings. This is true for both POS and SEM
tagging. The differences in POS tagging accuracy
are statistically significant (p < 0.001) for all pair-
wise comparisons except for Ar vs. Ru; the differ-
ences in SEM tagging accuracy are significant for
all comparisons except for Ru vs. Zh.



Figure 2: SEM tagging accuracy with fine/coarse-
grained tags using features extracted from differ-
ent encoding layers of 4-layered NMT models
trained with different target languages.

Finally, we note that training an English autoen-
coder on the smaller dataset results in much worse
representations compared to MT models, for both
POS and SEM tagging (Table 4, last column), con-
sistent with the behavior we observed on the larger
data (Table 3, last column).

4.3 Analysis at the semantic tag level

The SEM tags are grouped in coarse-grained cat-
egories such as events, names, time, and logical
expressions (Bjerva et al., 2016). In Figure 2
(top lines), we show the results of training and
testing classifiers on coarse tags. Similar trends
to the fine-grained case arise, with higher abso-
lute scores: significant improvement using the 1st
encoding layer and some additional improvement
using the 4th layer, both statistically significant
(p < 0.001). Again, there is a small effect of the
target language.

Figure 3 shows the change in F1 score (averaged
over target languages) when moving from layer 1
to layer 4 representations. The blue bars describe
the differences per coarse tag when directly pre-
dicting coarse tags. The red bars show the same
differences when predicting fine-grained tags and
micro-averaging inside each coarse tag. The for-
mer shows the differences between the two lay-
ers at distinguishing among coarse tags. The latter
gives an idea of the differences when distinguish-
ing between fine-grained tags within a coarse cat-
egory. The first observation is that in the majority
of cases there is an advantage for classifiers trained
with layer 4 representations, i.e., higher layer rep-
resentations are better suited for learning the SEM

Figure 3: Difference in F1 when using represen-
tations from layer 4 compared to layer 1, showing
F1 when directly predicting coarse tags (blue) and
when predicting fine-grained tags and averaging
inside each coarse tag (red).

tags, at both coarse and fine-grained levels.
Considering specific tags, higher layers of the

NMT model are especially better at capturing se-
mantic information such as discourse relations
(DIS tag: subordinate vs. coordinate vs. apposi-
tion relations), semantic properties of nouns (roles
vs. concepts, within the ENT tag), events and pred-
icate tense (EVE and TNS tags), logic relations
and quantifiers (LOG tag: disjunction, conjunc-
tion, implication, existential, universal, etc.), and
comparative constructions (COM tag: equatives,
comparatives, and superlatives). These examples
represent semantic concepts and relations that re-
quire a level of abstraction going beyond the lex-
eme or word form, and thus might be better repre-
sented in higher layers in the deep network.

One negative example that stands out in Fig-
ure 3 is the prediction of the MOD tag, correspond-
ing to modality (necessity, possibility, and nega-
tion). It seems that such semantic concepts should
be better represented in higher layers following
our previous hypothesis. Still, layer 1 is better than
layer 4 in this case. One possible explanation is
that words tagged as MOD form a closed class, with
only a few and mostly unambiguous words (“no”,
“not”, “should”, “must”, “may”, “can”, “might”,
etc.). It is enough for the classifier to memo-
rize these words in order to predict this class with
high F1, and this is something that occurs better in
lower layers. One final case worth mentioning is
the NAM category, which stands for different types
of named entities (person, location, organization,
artifact, etc.). In principle, this seems a clear case
of semantic abstractions suited for higher layers,



L1 L4

1 REL SUB Zimbabwe ’s President Robert Mugabe has freed three men who were jailed for murder and sab-
otage as they battled South Africa ’s anti-apartheid African National Congress in 1988 .

2 REL SUB The military says the battle erupted after gunmen fired on U.S. troops and Afghan police investi-
gating a reported beating of a villager .

3 IST SUB Election authorities had previously told Haitian-born Dumarsais Simeus that he was not eligible
to run because he holds U.S. citizenship .

4 AND COO Fifty people representing 26 countries took the Oath of Allegiance this week ( Thursday ) and
became U.S. citizens in a special ceremony at the Newseum in Washington , D.C.

5 AND COO But rebel groups said on Sunday they would not sign and insisted on changes .
6 AND COO A Fox asked him , “ How can you pretend to prescribe for others , when you are unable to heal

your own lame gait and wrinkled skin ? ”

7 NIL APP But Syria ’s president , Bashar al-Assad , has already rejected the commission ’s request [...]
8 NIL APP Hassan Halemi , head of the pathology department at Kabul University where the autopsies were

carried out , said hours of testing Saturday confirmed [...]
9 NIL APP Mr. Hu made the comments Tuesday during a meeting with Ichiro Ozawa , the leader of Japan ’s

main opposition party .

10 AND COO [...] abortion opponents will march past the U.S. Capitol and end outside the Supreme Court .
11 AND COO Van Schalkwyk said no new coal-fired power stations would be approved unless they use technol-

ogy that captures and stores carbon emissions .
12 AND COO A MEMBER of the Kansas Legislature meeting a Cake of Soap was passing it by without recog-

nition , but the Cake of Soap insisted on stopping and shaking hands .

Figure 4: Examples of cases of disagreement between layer 1 (L1) and layer 4 (L4) representations when
predicting SEM tags. The correct tag is italicized and the relevant word is underlined.

but the results from layer 4 are not significantly
better than those from layer 1. This might be sig-
naling a limitation of the NMT system at learning
this type of semantic classes. Another factor might
be the fact that many named entities are out of vo-
cabulary words for the NMT system.

4.4 Analyzing discourse relations

In this section, we analyze specific cases of dis-
agreement between predictions using representa-
tions from layer 1 and layer 4. We focus on dis-
course relations, as they show the largest improve-
ment when going from layer 1 to layer 4 repre-
sentations (DIS category in Figure 3). Intuitively,
identifying discourse relations requires a relatively
large context so it is expected that higher layers
would perform better in this case.

There are three discourse relations in the SEM
tags annotation scheme: subordinate (SUB), coor-
dinate (COO), and apposition (APP) relations. For
each of those, Figure 4 (examples 1-9) shows the
first three cases in the test set where layer 4 rep-
resentations correctly predicted the tag but layer 1
representations were wrong. Examples 1-3 have
subordinate conjunctions (as, after, because) con-
necting a main and an embedded clause, which
layer 4 is able to correctly predict. Layer 1 mis-
takes these as attribute tags (REL, IST) that are
usually used for prepositions. In examples 4-5,

the coordinate conjunction and is used to connect
sentences/clauses, which layer 4 correctly tags as
COO. Layer 1 wrongly predicts the tag AND, which
is used for conjunctions connecting shorter ex-
pressions like words (e.g., “murder and sabotage”
in example 1). Example 6 is probably an annota-
tion error, as and connects the phrases “lame gait”
and “wrinkled skin” and should be tagged as AND.
In this case, layer 1 is actually correct. In exam-
ples 7-9, layer 4 correctly identifies the comma as
introducing an apposition, while layer 1 predicts
NIL, a tag for punctuation marks without seman-
tic content (e.g., end-of-sentence period). As ex-
pected, in most of these cases identifying the dis-
course function requires a fairly large context.

Finally, we show in examples 10-12 the first
three occurrences of AND in the test set, where
layer 1 was correct and layer 4 was wrong. In-
terestingly, two of these (10-11) are clear cases of
and connecting clauses or sentences, which should
have been annotated as COO, and the last (12) is a
conjunction of two gerunds. The predictions from
layer 4 in these cases thus appear justifiable.

4.5 Other architectural variants

Here we consider two architectural variants that
have been shown to benefit NMT systems: bidi-
rectional encoder and residual connections. We
also experiment with NMT systems trained with



different depths. Our motivation in this section is
to see if the patterns we observed thus far hold in
different NMT architectures.

Bidirectional encoder Bidirectional LSTMs
have become ubiquitous in NLP and also give
some improvement as NMT encoders (Britz et al.,
2017). We confirm these results and note im-
provements in both translation (+1-2 BLEU) and
SEM tagging quality (+3-4% accuracy), across
the board, when using a bidirectional encoder.
Some of our bidirectional models obtain 92-93%
accuracy, which is close to the state-of-the-art on
this task (Bjerva et al., 2016). We observed similar
improvements on POS tagging. Comparing POS
and SEM tagging (Table 5), we note that higher
layer representations improve SEM tagging, while
POS tagging peaks at layer 1, in line with our
previous observations.

Residual connections Deep networks can
sometimes be trained better if residual con-
nections are introduced between layers. Such
connections were also found useful for SEM
tagging (Bjerva et al., 2016). Indeed, we noticed
small but consistent improvements in both trans-
lation (+0.9 BLEU) and POS and SEM tagging
(up to +0.6% accuracy) when using features ex-
tracted from an NMT model trained with residual
connections (Table 5). We also observe similar
trends as before: POS tagging does not benefit
from features from the upper layers, while SEM
tagging improves with layer 4 representations.

Shallower MT models In comparing network
depth in NMT, Britz et al. (2017) found that en-
coders with 2 to 4 layers performed the best. For
completeness, we report here results using features
extracted from models trained originally with 2
and 3 layers, in addition to our basic setting of 4
layers. Table 6 shows consistent trends with our
previous observations: POS tagging does not ben-
efit from upper layers, while SEM tagging does,
although the improvement is rather small in the
shallower models.

5 Related Work

Techniques for analyzing neural network mod-
els include visualization of hidden units (Elman,
1991; Karpathy et al., 2015; Kádár et al., 2016;
Qian et al., 2016a), which provide illuminating,
but often anecdotal information on how the net-
work works. A number of studies aim to ob-

0 1 2 3 4

Uni
POS 87.9 92.0 91.7 91.8 91.9
SEM 81.8 87.8 87.4 87.6 88.2

Bi
POS 87.9 93.3 92.9 93.2 92.8
SEM 81.9 91.3 90.8 91.9 91.9

Res
POS 87.9 92.5 91.9 92.0 92.4
SEM 81.9 88.2 87.5 87.6 88.5

Table 5: POS and SEM tagging accuracy
with features from different layers of 4-layer
Uni/Bidirectional/Residual NMT encoders, aver-
aged over all non-English target languages.

0 1 2 3 4

4
POS 87.9 92.0 91.7 91.8 91.9
SEM 81.8 87.8 87.4 87.6 88.2

3
POS 87.9 92.5 92.3 92.4 –
SEM 81.9 88.2 88.0 88.4 –

2
POS 87.9 92.7 92.7 – –
SEM 82.0 88.5 88.7 – –

Table 6: POS and SEM tagging accuracy with fea-
tures from different layers of 2/3/4-layer encoders,
averaged over all non-English target languages.

tain quantitative correlations between parts of the
neural network and linguistic properties, in both
speech (Wu and King, 2016; Alishahi et al., 2017;
Belinkov and Glass, 2017; Wang et al., 2017) and
language processing models (Köhn, 2015; Qian
et al., 2016a; Adi et al., 2016; Linzen et al., 2016;
Qian et al., 2016b). Methodologically, our work is
most similar to Shi et al. (2016) and Belinkov et al.
(2017), who also used hidden vectors from neural
MT models to predict linguistic properties. How-
ever, they focused on relatively low-level tasks
(syntax and morphology, respectively), while we
apply the approach to a semantic task and com-
pare the results with a POS tagging task.

Our methodology is reminiscent of the ap-
proach taken by Pérez-Ortiz and Forcada (2001),
who trained a recurrent neural network POS tagger
in two steps. However, their goal was to improve
POS tagging while we use it as a task to evaluate
neural MT models.



6 Conclusion

While neural network models have improved the
state-of-the-art in machine translation, it is diffi-
cult to interpret what they learn about language.
In this work, we explore what kind of linguistic
information such models learn at different layers.
Our experimental evaluation leads to interesting
insights about the hidden representations in NMT
models such as the effect of layer depth and target
language on part-of-speech and semantic tagging.

In the future, we would like to extend this work
to other syntactic and semantic tasks that require
building relations such as dependency relations
and predicate-argument structure or to evaluate se-
mantic representations of multi-word expressions.
We believe that understanding how semantic prop-
erties are learned in NMT is a key step for creating
better machine translation systems.

Acknowledgments

This research was carried out in collaboration be-
tween the HBKU Qatar Computing Research In-
stitute (QCRI) and the MIT Computer Science and
Artificial Intelligence Laboratory (CSAIL).

References
Lasha Abzianidze, Johannes Bjerva, Kilian Evang,

Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The Par-
allel Meaning Bank: Towards a Multilingual Cor-
pus of Translations Annotated with Compositional
Meaning Representations. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, pages 242–247. Association for Com-
putational Linguistics.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer
Lavi, and Yoav Goldberg. 2016. Fine-grained Anal-
ysis of Sentence Embeddings Using Auxiliary Pre-
diction Tasks. arXiv preprint arXiv:1608.04207.

Afra Alishahi, Marie Barking, and Grzegorz Chrupała.
2017. Encoding of phonology in a recurrent neu-
ral model of grounded speech. In Proceedings of
the SIGNLL Conference on Computational Natural
Language Learning, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv preprint
arXiv:1409.0473.

Marzieh Bazrafshan and Daniel Gildea. 2013. Seman-
tic Roles for String to Tree Machine Translation. In

Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 419–423, Sofia, Bulgaria. As-
sociation for Computational Linguistics.

Marzieh Bazrafshan and Daniel Gildea. 2014. Com-
paring Representations of Semantic Roles for
String-To-Tree Decoding. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1786–1791,
Doha, Qatar. Association for Computational Lin-
guistics.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017. What do Neural
Machine Translation Models Learn about Morphol-
ogy? In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 861–872. Association
for Computational Linguistics.

Yonatan Belinkov and James Glass. 2017. Analyzing
Hidden Representations in End-to-End Automatic
Speech Recognition Systems. In Advances in Neu-
ral Information Processing Systems (NIPS).

Johannes Bjerva, Barbara Plank, and Johan Bos. 2016.
Semantic Tagging with Deep Residual Networks.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 3531–3541, Osaka, Japan.
The COLING 2016 Organizing Committee.

Denny Britz, Anna Goldie, Thang Luong, and Quoc
Le. 2017. Massive Exploration of Neural Machine
Translation Architectures. ArXiv e-prints.

Seng Yee Chan, Tou Hwee Ng, and David Chiang.
2007. Word Sense Disambiguation Improves Sta-
tistical Machine Translation. In Proceedings of the
45th Annual Meeting of the Association of Compu-
tational Linguistics, pages 33–40. Association for
Computational Linguistics.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, and Stephan Vogel. 2017. Understanding
and Improving Morphological Learning in the Neu-
ral Machine Translation Decoder. In Proceedings
of the 8th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
Taipei, Taiwan. Association for Computational Lin-
guistics.

Jeffrey L Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical struc-
ture. Machine learning, 7(2-3):195–225.

Qin Gao and Stephan Vogel. 2011. Utilizing Target-
Side Semantic Role Labels to Assist Hierarchical
Phrase-based Machine Translation. In Proceedings
of Fifth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation, pages 107–115. As-
sociation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

http://aclweb.org/anthology/E17-2039
http://aclweb.org/anthology/E17-2039
http://aclweb.org/anthology/E17-2039
http://aclweb.org/anthology/E17-2039
http://www.aclweb.org/anthology/P13-2074
http://www.aclweb.org/anthology/P13-2074
http://www.aclweb.org/anthology/D14-1188
http://www.aclweb.org/anthology/D14-1188
http://www.aclweb.org/anthology/D14-1188
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
https://doi.org/10.18653/v1/P17-1080
http://aclweb.org/anthology/C16-1333
http://arxiv.org/abs/1703.03906
http://arxiv.org/abs/1703.03906
http://aclweb.org/anthology/P07-1005
http://aclweb.org/anthology/P07-1005
http://aclweb.org/anthology/W11-1012
http://aclweb.org/anthology/W11-1012
http://aclweb.org/anthology/W11-1012


Bevan Jones, Jacob Andreas, Daniel Bauer,
Moritz Karl Hermann, and Kevin Knight. 2012.
Semantics-Based Machine Translation with Hyper-
edge Replacement Grammars. In Proceedings of
COLING 2012, pages 1359–1376. The COLING
2012 Organizing Committee.
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