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Abstract

Short vowels, aka diacritics, are more of-
ten omitted when writing different varieties
of Arabic including Modern Standard Arabic
(MSA), Classical Arabic (CA), and Dialectal
Arabic (DA). However, diacritics are required
to properly pronounce words, which makes di-
acritic restoration (a.k.a. diacritization) essen-
tial for language learning and text-to-speech
applications. In this paper, we present a sys-
tem for diacritizing MSA, CA, and two vari-
eties of DA, namely Moroccan and Tunisian.
The system uses a character level sequence-
to-sequence deep learning model that requires
no feature engineering and beats all previous
SOTA systems for all the Arabic varieties that
we test on.

1 Introduction

Most varieties of Arabic are typically written with-
out short vowels, aka diacritics, and readers need
to recover such diacritics to properly pronounce
words. Modern Standard Arabic (MSA) and Clas-
sical Arabic (CA) use two types of diacritics,
namely: core-word diacritics, which specify lex-
ical selection, and case endings, which generally
indicate syntactic role. Conversely, Arabic Di-
alects mostly use core-word diacritics and usually
use a silence diacritic (sukun) for case-endings.
For example, given the present tense MSA and
CA verb “yfhm”1 can be diacritized as “yafoham”
(meaning: “he understands”) or “yufah∼im” (“he
explains”). Both can accept dammah (u), fatHa
(a), or sukun (o) as grammatical case endings ac-
cording to surrounding context. The equivalent
version in some Arabic dialects is “byfhm”, which
can be diacritized as “biyifohamo” (“he under-
stands”) or “biyofah∼imo” (“he explains”). This
highlights the complexity of the task of recovering

1Buckwalter Arabic transliteration scheme is used
throughout the paper.

the diacritics, a prerequisite for Language Learn-
ing (Asadi, 2017) and Text to Speech (Sherif,
2018) among other applications.

In this paper, we present a system that employs
a character-based sequence-to-sequence model
(seq2seq) (Britz et al., 2017; Cho et al., 2014;
Kuchaiev et al., 2018) for diacritizing four dif-
ferent varieties of Arabic. We use the approach
described by Mubarak et al. (2019), which they
applied to MSA only, to build a system that ef-
fectively diacritizes MSA, CA, and and two va-
rieties of Dialectal Arabic (DA), namely Moroc-
can (MA) and Tunisian (TN). Our system beats
all previously reported SOTA results for the afore-
mentioned varieties of Arabic. The underlying
approach treats diacritic recovery as a translation
problem, where a sequential encoder and a se-
quential decoder are employed with undiacritized
characters as input and diacritized characters as
output. The system is composed of four main
componenets, namely: 1) a web application that
efficiently handles concurrent user diacritization
requests; 2) a text tokenization and cleaning mod-
ule based on Farasa (Abdelali et al., 2016), a
SOTA Arabic NLP toolkit; 3) Arabic variety iden-
tifier based on a fastText (Joulin et al., 2016), a
deep learning classification toolkit, to properly as-
certain the appropriate diacritization model; and 4)
a Neural Machine Translation (NMT) based archi-
tecture, based on OpenNMT (Klein et al., 2017),
to translate sequences of undiacritized characters
to diacritized sequences.

The contributions in this paper are:

• We deploy a web-based system that di-
acritizes four varieties of Arabic (MSA,
CA, DA-MA, and DA-TN) with appropriate
RESTful API.

• We employ one architecture to effectively di-
acritize the different varieties. The model re-
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quires no feature engineering or external re-
sources such as segmenters or POS taggers.
Our system surpasses SOTA results for all va-
rieties of Arabic that we test on.

• We created large training and test datasets for
CA that are highly consistent. We plan to
make the test set, which is composed of 5,000
sentences (400k words) publicly available.

Figure 1: System architecture

2 System Architecture

2.1 Web Application
Figure 1 showcases the component of our demo.
In a web browser, the user submits a sentence to
diacritize. An instance of NGiNX web server re-
ceives the user request and routes it to the under-
lying application server. The application server is
composed of two parts, namely “Flask” and “GU-
nicorn” (a.k.a. Green Unicorn). Flask is a web
framework that deploys Python-based web appli-
cation. Due to Flask’s load restriction, where it
does not handle concurrent requests and lacks se-
curity, we use GUnicorn, which is a web server
gateway interface, as an interface between NG-
INX and Flask to handle concurrent requests and
to properly handle security issues. Gunicorn con-
verts NGINX requests into Python objects, which

are usable by the Flask frameworks. We make
the diacritizer available as a web application and a
web service that are freely accessible at: https:
//bit.ly/2IdFRVE.

2.2 Arabic Preprocessing
Flask deploys our diacritization application, which
is composed of multiple components. The first
component is Farasa segmenter (Abdelali et al.,
2016), which is a SOTA publicly available Arabic
processing toolkit. From the Farasa utilities, we
use tokenization and text cleaning. Tokenization
processes the text stream character by character
to produce individual tokens composed of letters
and numbers. Normalization maps Hindi numbers
to Arabic numbers, converts non-Arabic extended
Arabic script letters, such as those from Farsi or
Urdu, to the closest Arabic letters, and removes
all non-Arabic letters and numbers.

2.3 Arabic Variety Identification
The user may explicitly specify the variety of Ara-
bic that they have entered. Available options in-
clude MSA, CA, DA-MA, and DA-TN. If the user
does not specify the variety of Arabic, we em-
ploy a variety ID classifier. For this, we use a
character-based deep-leaning classifier using fast-
Text (Joulin et al., 2016) with character segments
ranging between 3 and 6 grams, a learning rate
of 0.05, and 50 training epochs. we opted to use
characters for classification instead of words be-
cause Arabic is a complex language with a rich
morphology, and many prefixes and suffixes can
be attached to words. Also for dialectal Arabic,
words can be written in many different accepted
ways due to the lack of a standard orthography.

2.4 Diacritization
For diacritization, Mubarak et al. (2019) show the
effectiveness of using Neural Machine Transla-
tion (NMT) framework to properly diacritize MSA
while recovering both core-word diacritics and
case-endings jointly and without the need for any
feature engineering. We use their approach to train
diacritizers for MSA, and we extend their work
to train diacritizers for CA, DA-MA, and DA-TN.
The method is composed of three component:
The first component produces overlapping sliding
window sequences of n words. Diacritization re-
quires that word and character orderings are pre-
served. Thus, the NMT model needs to be con-
strained to avoid word and character re-ordering,

https://bit.ly/2IdFRVE
https://bit.ly/2IdFRVE
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insertion, and deletions. As in Mubarak et al.
(2019), we enforce these constraints using a slid-
ing window strategy, where the model is trained
and tested on consecutive text windows of fixed
length of 7 words.

The second component is an NMT model,
which translates undiacritized sequences of char-
acters to diacritized sequences. We use the Open-
NMT implementation. Formally, given a word se-
quence wi in source sentence Ssrc, we want to
map it to the diacritized word w′

i in target sentence
Strg such that:

Ssrc = w0, w1, w2, ...., wn

Strg = w′
0, w

′
1, w

′
2, ...., w

′
n

(1)

and:

wi = c0, c1, .., cm c ∈ {C,L}.
C : Arabic characters

w′
i = c0v0, c1v1, .., cmvm v ∈ {V,Ø}
V : Arabic diacritics

(2)

The third is a voting component. Since a word
may appear in multiple consecutive windows, we
get multiple diacritized versions of every word.
This allows us to use voting to select the most
common diacritized form for a word. In case of
a tie, we favor the window in which the word ap-
pears exactly in the middle. Table 1 provides an
example for a three words sentence “ktb Alwld
Aldrs” (the boy wrote the lesson) with a 3 word
sliding window.

Source Target
<s> <s> k t b <s> <s> ka ta ba
<s> k t b A l w l d <s> ka ta ba A lo wa la du
k t b A l w l d A l d r s ka ta ba A lo wa la du

A l d∼a ro sa
A l w l d A l d r s <e> A lo wa la du A l d∼a ro sa

<e>
A l d r s <e> <e> A l d∼a ro sa <e> <e>

Table 1: Example sentence: “ktb Alwld Aldrs” with
context window size of 3. Symbols “<s>” and “<e>”
are added to mark start and end of the sentence.

3 Data and Training

For MSA, we used a diacritized corpus of 4.5m
words for training (Darwish et al., 2017; Mubarak
et al., 2019). This corpus covers different genres
such as politics, economy, religion, sports, society,
etc. And for testing, we used the freely available
WikiNews corpus (Darwish et al., 2017) which
contains 18.3k words and covers multiple genres.

For CA, we obtained a classical diacritized cor-
pus of 65m words from a publisher. We used 5k
random sentences (400k words) for testing, and
we used the remaining words for training. We are
making the test set available at: https://bit.
ly/2KuOvkN.
For DA, we used the corpora described in
(Darwish et al., 2018), which is composed of
two diacritized translations of the New Tes-
tament into Moroccan (DA-MA) and Tunisian
(DA-TN). These corpora contain 166k and 157k
words respectively. For each dialect, we split
the diacritized corpora into 70/10/20 for train-
ing/validation/testing splits respectively. Our
splits exactly match those of Abdelali et al. (2018).
We used 5-fold cross validation.

Table 3 lists the details of the training and test
sets including the unique diacritized and undia-
critized tokens and the percentage of OOVs in the
test set that don’t appear in the training set. For
MSA and CA, we randomly used 10% of the train-
ing set for validation and the rest for training.

3.1 Training
For variety identification, given the diacritization
training sets, we trained the classifier using 7,000
random sentences from each corpus and we used
1,000 sentences for testing. As the testing se-
quences increase in length (more input words), the
accuracy of the classifier increases as in Table 2.

Input length 5 10 15 20
Accuracy 93.8 98.5 99.0 99.1

Table 2: Arabic variety identification per input length

When building the diacritization models, we
used the OpenNMT-tf implementation for training
with the hyperparameters suggested in the Open-
NMT website2. We used two RNN layers of size
500 each and embeddings of size 300. We ran 1M
training epochs for each system, which took on av-
erage 8 to 24 hours per system.

4 Evaluation and Analysis

For evaluation, we report on the results of evalu-
ating the models as well as the performance of the
deployed system.

4.1 System Results
Table 4 summarizes the results per dataset and
compares our system to other SOTA systems on

2https://github.com/OpenNMT/OpenNMT-tf

https://github.com/OpenNMT/OpenNMT-tf


220

Train Test
Word Total Uniq Total Uniq OOV%

MSA Diac. 4.5m 333k 18.3k 7.9k 5.0
Undiac. 209k 6.8k 3.3

CA Diac. 65.6m 489k 409k 39k 3.6
Undiac. 254k 29k 2.3

DA- Diac. 151k 16.3k 15.4k 4.1k 19.5
MA Undiac. 15.9k 4.0k 19.0

DA- Diac. 142k 17.2k 15.3k 4.4k 21.5
TN Undiac. 16.6k 4.3k 20.7

Table 3: Number of words in training and test data for
MSA, CA, and DA

identical test sets. WER is computed at word-
level, and hence the whole word is counted as an
error if a single character therein receives an in-
correct diacritic. Since we did not have access to
systems that are specially tuned for CA, we com-
pared our system to Farasa (Darwish et al., 2017),
which was tuned for MSA. As the results clearly
show, using the NMT model at character level
consistently produced better results than all SOTA
systems. This confirms the previous conclusions
of (Mubarak et al., 2019) about the superiority
of using a character based seq2seq model for dia-
critization. While previously published results us-
ing DNN BiLSTM approaches have improved the
results over other machine learning approaches;
NMT invariably reduced the errors further – be-
tween 25% to 60%.

Setup WER%

MSA Our System 4.5
Microsoft ATKS (Said et al., 2013) 12.3
Farasa (Darwish et al., 2017) 12.8
RDI (Rashwan et al., 2015) 16.0
MADAMIRA (Pasha et al., 2014) 19.0
MIT (Belinkov and Glass, 2015) 30.5

CA Our System 3.7
Farasa (Darwish et al., 2017) 12.8

DA- Our System 1.4
MA Bi-LSTM DNN (Abdelali et al., 2018) 2.7

CRF (Darwish et al., 2018) 2.9

DA- Our System 2.5
TN Bi-LSTM DNN (Abdelali et al., 2018) 3.6

CRF (Darwish et al., 2018) 3.8

Table 4: Results and comparison of full diacritization
systems.

4.2 System Performance

The system is running on a Microsoft Azure vir-
tual machine with 4 CPU cores and 16 gigabytes
of memory. The system does not require a GPU

for decoding. We configured the application server
to handle 100 concurrent requests, with each re-
quest containing a text sentence. In our testing,
the system is able to process 10,000 requests in
14.9 seconds with zero failures. In other words,
the server is able to handle 672 requests per sec-
ond, with each request finishing in 149 millisec-
onds on average. Implementing memory mapped
files to minimize disk access would further speed
up the processing of requests and enhance the per-
formance of the system.

4.3 Error Analysis

For MSA: we randomly selected 100 word-core
and 100 case-ending errors to ascertain the most
common error types. For case-endings, the top 4
error types were: long-distance dependency (e.g.
coordination or verb subj/obj), which is an artifact
of using limited context – 24% of errors; confu-
sion between different syntactic functions (e.g. N
N vs. N ADJ or V Subj vs. V Obj) – 22%; wrong
selection of morphological analysis (e.g. present
tense vs. past tense) – 20%; and named entities
(NEs) – 16%. For long distance dependencies, in-
creasing context size may help in some case, but
may introduce additional errors. Perhaps combin-
ing multiple context sizes may help. As for word-
cores, the top 4 errors were: incorrect selection for
ambiguous words, where most of these errors were
related to active vs. passive voice – 60%; NEs –
32%; borrowed words – 4%; and words with mul-
tiple valid diacritized words – 4%.
For CA: We randomly selected 100 errors and
the top 4 error types, which summed up to 85%
of errors, were: wrong diacritized form selec-
tion – 36% of errors (e.g. “Almalik” (the king)
vs. “Almalak” (the angel)); long-distance depen-
dency (e.g. coordination or verb subj/obj as in “jA’
Alnby mlk”, (an angel came to the prophet) where
the object preceded the subject) – 32%; confusion
between different syntactic functions (e.g. N N vs.
N ADJ) – 9%; confusion between different suf-
fixes or prefixes, (e.g. “katabta” (you wrote) vs.
“katabat” (she wrote)) – 8%. We also found that
in 7% of the differences, the diacritizations of both
the reference and system output were in fact cor-
rect (e.g. “jinAzp” and “janAzp” (funeral)).
For DA: We manually inspected 100 random er-
rors. The bulk of these errors (71%) came from
confusing the vowels a, i, and u, with sukun or
sukun-shaddah. This is normal due to the high fre-
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Figure 2: Screenshot for the demo site https://
bit.ly/2IdFRVE

quency of sukkun in both Moroccan and Tunisian
dialects compared to other varieties of Arabic (Ab-
delali et al., 2018). In about 8% of the cases, which
involved NEs, the gold reference was not consis-
tently diacritized, making it difficult for the sys-
tem to learn properly. In an additional 5%, the
system hallucinated producing output that is com-
pletely untethered from the source material (e.g.
“$ayaTino” (the devil) vs. “$iTnino” (non-word)).
These type of errors are likely an artifact of the
seq2seq model. We plan to handle these errors
in future by aligning input and output words and
make sure that output letters are exactly the same
as input, and by handling special characters that
sometimes appear in DA. The remaining errors
(16%) were due to erroneous selections, where for
example, the system confused between feminine
and masculine pronouns (e.g. “noti” (you: Fem.)
vs. “nota” (you: masc.)).

5 Related Work

While the bulk of Arabic diacritic recovery re-
search was devoted to MSA diacritization, work
on CA and DA is still scarce. This can be at-
tributed to many factors, primarily the absence of
large standard resources.

In early experiments on CA diacritization by
Gal (2002) and Elshafei et al. (2006), they used
the Qur’anic text, composed of 18,623 diacritized
words, and a Hidden Markov Model. Gal (2002)
reported a word error rate (WER) of 14%, and
Elshafei et al. (2006) reported a character error
rate of 2.5%. As for DA, a number of sys-
tems designed either solely for diacritization or
that supports the diacritization among other func-
tionalities. Linguistic Data Consortium (LDC)
CallHome corpus, containing 160K words worth

of transcripts of informal Egyptian Arabic was
among the earlier resources used for DA. Em-
ployed technologies varied from manually crafted
rules (Vergyri and Kirchhoff, 2004), finite state
transducer and support vector machine (Habash
et al., 2012; Khalifa et al., 2017; Jarrar et al.,
2017), Conditional Random Fields (Darwish et al.,
2018), and Deep Neural Networks (Abdelali et al.,
2018). While there is no standard dataset for eval-
uation, recent reported performance on Moroccan
and Tunisian was a WER of 2.7% and 3.6% re-
spectively (Abdelali et al., 2018).

Similarly, for MSA, LDC Arabic Treebank
(Part 2)3 and its successor Part 3 (ATB3) v 1.0
and 3.2 were used with a myriad of technolo-
gies (Habash and Rambow, 2007; Pasha et al.,
2014; Abandah et al., 2015) that combines SVM
classifier and Recurrent Neural Networks. Aban-
dah et al. (2015) reported a WER of 9.07% us-
ing a neural architecture consisting of two Recur-
rent Neural network layers with 250 nodes each.
Darwish et al. (2017) used a corpus of 4.5m fully
diacritized words to train an SVM classifier that
achieved a 12.76% WER.

In sum, three resources were explored for dia-
critics recovery, namely:
– For CA: Qura’nic text with 18k words.
– For DA: LDC CallHome with 160k words; the
Moroccan and Tunisian Bibles with 166k and
157k words respectively.
– For MSA: LDC Arabic Treebank with 340k
words (v3.2); and a proprietary corpus of 4.5m
words (Darwish et al., 2017).

6 Conclusion

In this paper, we introduced a system for dia-
critizing four different varieties of Arabic, namely
MSA, CA, DA-TN, and DA-MA. The system em-
ploys a character based seq2seq model without
the need for any feature engineering while beat-
ing other SOTA systems. The system is deployed
as a web application with corresponding RESTful
API. Our WER results respectively for MSA, CA,
DA-MA, and DA-Tunisian are: 4.5%, 3.7%, 1.4%,
and 2.5%. We plan to extend the system by inte-
grating diacritization models for other dialects and
to make the system more robust to handle different
kinds of input texts with special characters, which
are prevalent in tweets.

3https://catalog.ldc.upenn.edu/
LDC2004T02

https://bit.ly/2IdFRVE
https://bit.ly/2IdFRVE
https://catalog.ldc.upenn.edu/LDC2004T02
https://catalog.ldc.upenn.edu/LDC2004T02
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