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Abstract
Joint models have recently shown to improve the state-of-the-art in machine translation (MT).
We apply EM-based mixture modeling and data selection techniques using two joint models,
namely the Operation Sequence Model or OSM — an ngram-based translation and reordering
model, and the Neural Network Joint Model or NNJM — a continuous space translation model,
to carry out domain adaptation for MT. The diversity of the two models, OSM with inherit
reordering information and NNJM with continuous space modeling makes them interesting to
be explored for this task. Our contribution in this paper is fusing the existing known techniques
(linear interpolation, cross-entropy) with the state-of-the-art MT models (OSM, NNJM). On a
standard task of translating German-to-English and Arabic-to-English IWSLT TED talks, we
observed statistically significant improvements of up to +0.9 BLEU points.

1 Introduction

Parallel data required to train Statistical Machine Translation (SMT) systems is often inade-
quate, and is typically collected opportunistically from wherever it is available. The conven-
tional wisdom is that more data improves the translation quality. Additional data however, may
not be best suited for tasks such as translating TED talks (Cettolo et al., 2014) or patents (Fujii
et al., 2010) or educational content (Abdelali et al., 2014), and often come with the challenges of
dealing with word-sense ambiguities and stylistic variance of other domains. When additional
data, later referred as out-domain, is much larger than in-domain, the resultant distribution can
get biased towards out-domain, yielding a sub-optimal system. Domain adaptation aims to pre-
serve the identity of the in-domain data while using the best of the out-domain data. This is
done by selecting a subset from the out-domain data, which is closer to the in-domain (Mat-
soukas et al., 2009; Moore and Lewis, 2010), or by re-weighting the probability distribution in
favor of the in-domain data (Foster and Kuhn, 2007; Sennrich, 2012).

Bilingual sequence models (Mariño et al., 2006) have shown to be effective in improv-
ing the quality of machine translation and have achieved state-of-the-art performance recently
(Le et al., 2012; Durrani et al., 2013; Devlin et al., 2014). Their ability to capture non-local
dependencies makes them superior to the traditional phrase-based models, which do not con-
sider contextual information across phrasal boundaries. Two such models that we explore in
this paper are (i) the Operation Sequence Model or OSM (Durrani et al., 2011) — a markov
translation model that integrates reordering, and (ii) the Neural Network Joint Model or NNJM
(Devlin et al., 2014) — a continuous space model that learns neural network over augmented
streams of source and target sequences. Both models are used as additional language model
(LM) features inside the SMT decoder.



The diversity of the two models, i.e., OSM with embedded reordering information and
NNJM with continuous space modeling, makes them interesting to be explored for domain
adaptation. The LM-like nature of the two models provides motivations to apply methods such
as perplexity optimization for model weighting and cross-entropy-based ranking for data selec-
tion. In this paper, we explore both avenues. Firstly, we train models (OSM and NNJM) from
each domain separately and then interpolate them (i) linearly using Expectation-Maximization
or EM-based weighting, (ii) using log-linear model inside the SMT pipeline. Secondly, we
use cross-entropy difference (Moore and Lewis, 2010) between in- and out-domain models to
perform data selection for domain adaptation.

The bilingual property of the OSM and NNJM models gives them an edge over traditional
LM-based methods, which do not capture source and target domain relevance jointly. The
embedded reordering information modeled in OSM helps it to preserve reordering characteristic
of the in-domain data. Capturing reordering variation across domains have been shown to be
beneficial also by Chen et al. (2013a). NNJM adds a different dimension to it by semantically
generalizing the data using distributed representation of words (Bengio et al., 2003).

We evaluated our systems on a standard task of translating IWSLT TED talks for German-
to-English (DE-EN) and Arabic-to-English (AR-EN) language pairs. Below is a summary of
our main findings:

Model Weighting:

• Linearly interpolating OSM models through EM-based weighting gave average BLEU (Pa-
pineni et al., 2002) improvements of up to +0.6 for DE-EN and +0.9 for AR-EN.

• Log-linear variant performed better in the case of NNJM giving an average improvements
of +0.4 BLEU points for DE-EN and +0.5 for AR-EN.

• Linear interpolation for NNJM models was slightly behind its log-linear variant.

Data Selection:

• OSM-based selection performed better for AR-EN task giving an average improvement of
+0.7

• NNJM performed better at the DE-EN task giving an average improvement of +0.6 points.

• Both OSM- and NNJM-based selection gave slightly better results than Modified-Moore-
Lewis (MML) selection (Axelrod et al., 2011).

The rest of the paper is organized as follows. Section 2 briefly describes the OSM and the
NNJM models. Section 3 describes mixture model and data selection techniques that we apply
using the OSM and the NNJM models to carry out adaptation. Section 4 presents the results.
Section 5 discusses related work and Section 6 concludes the paper.

2 Joint Sequence Models

In this section, we revisit Operation Sequence and Neural Network Joint models briefly.

2.1 Operation Sequence Model
The Operation Sequence Model (OSM) is a bilingual model that couples translation and re-
ordering by representing them as a sequence of operations. An operation either generates source



and/or target word(s) or performs reordering by inserting gaps and jumping forward and back-
ward. A bilingual sentence pair (T, S) and its word-alignment A is transformed deterministi-
cally to a heterogeneous sequence of translation and reordering operations (o1, o2, . . . , oJ ). A
Markov model is then learned over these sequences:

Posm(T, S) = P (o1, .., oJ) ≈
J∏
j=1

P (oj |oj−n+1...oj−1)

For example, the German-English sentence pair shown in Figure 1 can be converted into the
following sequence of operations:

Generate (Wir, We) – Generate (haben, have) – Insert Gap – Generate (genommen, taken) –
Jump Back (1) – Generate (sie, them) – Generate (aus, out) – Generate (ihrer , of their) –
Generate (ursprünglichen, natural) – Generate (Pyramids, pyramid)

Figure 1: Sample German-English Sentence with Alignments

The generation is carried out in the order of target (English in this case). Gaps and jumps are
inserted on the source side. Unaligned source and target words are handled through Generate
Source Only and Generate Target Only operations, respectively. Discontinuous source and
target units are handled through other operations; see Durrani et al. (2011) for details about the
operations and the algorithm to convert a word-aligned corpus into sequences of operations.

Mixing lexical generation and reordering, each (translation or reordering) decision condi-
tions on n−1 previous (translation or reordering) decisions. This allows the model to learn very
rich translation and reordering patterns. Moreover, the model is based on minimal translation
units (MTUs) and considers source and target contextual information across phrasal bound-
aries, thus addressing phrasal independence assumption and spurious segmentation problems in
traditional phrase-based MT.

2.2 Neural Network Joint Model
In recent years, there has been a great deal of effort dedicated to neural networks (NNs) and
word embeddings with applications to MT and other areas in NLP (Bengio et al., 2003; Auli
et al., 2013; Kalchbrenner and Blunsom, 2013; Gao et al., 2014; Schwenk, 2012; Collobert
et al., 2011; Mikolov et al., 2013; Socher et al., 2013; Hinton et al., 2012). A bilingual Neural
Network Joint model for MT was recently proposed by Devlin et al. (2014). It learns a feed-
forward neural network from augmented streams of source and target sequences. For a bilingual
sentence pair (S, T ), NNJM defines a conditional probability distribution:

P (T |S) ≈
|T |∏
i=1

P (ti|ti−1 . . . ti−n+1, si)

where, si is an m-word source window for a target word ti based on the one-to-one alignment
between T and S. Each input word in the context has a D dimensional (continuous-valued)



vector representation in the shared look-up table L ∈ R|Vi|×D, where Vi is the input vocabulary.
The context of the sequence is represented by a concatenated vector xn ∈ R(m+n−1)D, which
is then passed through non-linear hidden layers to learn a high-level representation. The output
layer is a softmax over the output vocabulary Vo:

P (yn = k|xn, θ) =
exp (wT

k φ(xn))∑|Vo|
m=1 exp (w

T
mφ(xn))

where φ(xn) defines the non-linear transformations of xn, and wk are the weights from the
outermost hidden layer to the output layer. By setting m and n to be sufficiently large, NNJM
can capture long-range cross-lingual dependencies between words.

3 Domain Adaptation

The ability to learn rich lexical and reordering patterns by OSM, the generalization power of
NNJM, and their strong empirical results in MT gives us a strong motivation to use them for the
problem of domain adaptation. However, the OSM and NNJM models trained on a plain con-
catenation of in-domain data with large and diverse multi-domain data are suboptimal. When
other domains are sufficiently larger and/or different than the in-domain, the probability dis-
tribution can skew away from the target domain resulting in poor performance. The goal in
domain adaptation is to do restrict this drift while still using the best of the available data.

We analyze the operation corpus as generated by the corpus conversion algorithm of Dur-
rani et al. (2011) in OSM training. It provides useful insights on the amount of reordering,
number of (source word) insertions and (target word) deletions that are carried out in the bilin-
gual corpus. We use this information to motivate our study. Table 1 shows some statistics
about the operations in several datasets. We report probabilities of Jumps (Jump Forward and
Jump Back (*) operations), Gaps (Insert Gap operation), Insertions of source words (Gen-
erate Source Only (X) operation to handle unaligned source words) and Deletions of target
words (Generate Target Only (Y) operation to handle unaligned target words) in each domain.

Domain Jumps Gaps Deletions Insertions

German-to-English

iwslt 0.17 0.09 0.06 0.04
news 0.21 0.13 0.05 0.07
europarl 0.22 0.14 0.07 0.06
common crawl 0.19 0.11 0.12 0.11

Arabic-to-English

iwslt 0.17 0.09 0.07 0.05
UN 0.21 0.12 0.07 0.08

Table 1: Probabilities of Jumps, Gaps, Insertion and Deletion operations in each domain.

The probabilities of Jumps and Gaps in the in-domain IWSLT data are lower than other domains
in both German-to-English and Arabic-to-English language pairs. This indicates that lesser
amount of reordering is required in the in-domain data. Because other domains are significantly
larger than the in-domain data, the resulting distribution would get biased towards doing more
reordering than desired. For example Insert Gap operation in Europral and UN data is much
probable than IWSLT (compare column Gaps in Table 1). Similarly the probability of insertions
carried out in the in-domain data is less than the other domains. Therefore, the resulting models



would favor more insertions than preferred by the in-domain data. Table 1 does not show
statistics on different vocabularies, but lexical variance between domains is obviously another
cause of divergence from the in-domain data, which previous methods have also tackled. In
this work, we additionally address the reordering variance across domains. These statistics,
although, collected from the operation corpus on which the OSM model is trained, can be
reflected on the NNJM training as well which uses same word-alignments to generate the stream
of source and target n-grams.

In this paper we study two directions to perform domain adaptation in MT. We apply mix-
ture modeling, a well-established model weighting technique, to re-weight the models in favor
of the in-domain data. More specifically, we first train OSM and NNJM models on different
domains and then use an EM-based interpolation to optimize the weights based on an in-domain
tuning set. We also use the two models to rank sequences for data selection using cross entropy
difference. In the next two subsections we discuss these in detail.

3.1 Model Weighting
We use both OSM and NNJM models as an additional language model feature inside the de-
coder. A domain-adapted version of the model, biased towards the in-domain data, can help
assigning higher scores to the hypotheses that represent lexical choices and reordering patterns
preferred by the in-domain data. We train OSM and NNJM models from each domain sep-
arately and learn the relative weights of the models using linear and log-linear interpolation
methods. For linear interpolation, we compute weights by optimizing perplexity on in-domain
tuning set1 using a standard EM-based algorithm as described below:

Model Weighting by EM: Let θd ∈ {θ1, . . . θD} represent a model (e.g., OSM, NNJM)
trained on domain d, where D is the total number of domains. The probability of a sequence
xn can be written as a mixture of D probability densities, each coming from a different model:

P (xn|θ, λ) =
D∑
d=1

P (xn|zn = d, θd) λd

where P (xn|zn = d, θd) represents the probability of xn assigned by model θd, and the mixture
weights λd satisfy 0 ≤ λd ≤ 1 and

∑D
d=1 λd = 1. In our setting, θ = {θ1, . . . θD} is known,

and we can use EM to learn the mixture weights. The expected complete data log likelihood is
given by:

E[L(λ)] =

N∑
n=1

D∑
d=1

rnd log [P (xn|zn = d, θd)λd]

where rnd = P (zn = d|xn, θd, λt−1d ) is the responsibility that domain d takes for data point
n given the mixing weight in the previous step λt−1d . In the E-step, we compute rnd and we
update λ in the M-step. More specifically:

E-step: Compute rtnd =
λt−1
d P (xn|zn=d,θd)∑D

d′=1
λt−1

d′ P (xn|zn=d,θd′ )

M-step: Update λtd =
1
N

∑N
n=1 r

t
nd

Once we have learned the relative weights of the models based on the in-domain tuning data,
we can linearly interpolate the models as:

1The tuning-set is required to be word-aligned and then converted into a sequence of operations (for OSM) and
augmented streams of source and target strings (for NNJM) to compute model-wise perplexities.



Posm(T, S) ≈
J∏
j=1

∑
d

λdP (oj |oj−n+1...oj−1, θd)

Pnnjm(T |S) ≈
|T |∏
i=1

∑
d

λdP (ti|ti−1 . . . ti−n+1, si, θd)

An alternative way to combine the models is through log-linear interpolation by optimizing
weights, directly on BLEU, along with other features inside of the SMT pipeline.

3.2 Data Selection
An alternative to model weighting is data selection, which attempts to filter out harmful data
from the training corpus rather than down weighting it. Data selection could be useful in a
scenario with memory constraints. However, a down-side of this approach is that it requires
extensive amount of experimentation to find an optimal cut-off point.

In this paper, we select data using differences in cross entropy as proposed by Moore and
Lewis (2010). More specifically, we first train a model (OSM or NNJM) on the in-domain
corpus, and then train another model on the out-domain data of equal size. Then we score the
out-domain data using:

score(x) = HI(x)−HO(x)

where x is a sequence of operations (o1, . . . , on) in the case of OSM and an augmented stream
of source and target sequences (t1, . . . , tn, si) in the case of NNJM. HD is the cross-entropy
between a model and the empirical n-gram distribution in the domain D. We train a 5-gram
OSM and a 14-gram NNJM with 5-grams on target-side and 4-grams on each side of the source
word that is aligned with the target word ti. The bilingual characteristic of the models makes it
comparable to the MML method which trains source- and target-side language models from in-
and out-domains separately and take a sum of cross-entropy differences over each side of the
corpus:

score(s, t) = [HI−src(s)−HO−src(s)] + [HI−tgt(t)−HO−tgt(t)]

where s and t are sequences of source and target strings respectively. Out-domain models are
trained by randomly selecting corpora of same size as that of the in-domain data.

4 Experiments

Data: We used TED talks (Cettolo et al., 2014) as our in-domain corpus. For German-to-
English (DE-EN), we used the data made available for WMT’14.2 This contains News, Europarl
and Common Crawl as out-domain data. For Arabic-English (AR-EN), we used the UN corpus
as out-domain data. We concatenated dev- and test-2010 for tuning and used test2011-2013 for
evaluation. Table 2 shows the size of the training and test data used.

NNJM Settings: The NNJM models were trained using NPLM3 toolkit (Vaswani et al., 2013)
with the following settings. We used a target context of 5 words and an aligned source window
of 9 words, forming a joint stream of 14-grams for training. We restricted source and target side
vocabularies to 20K and 40K most frequent words. We used an input embedding layer of 150

2http://www.statmt.org/wmt14/
3http://nlg.isi.edu/software/nplm/



German-English Arabic-English

Corpus Sent. TokDE TokEN Corpus Sent. TokAR TokEN

iwslt 177K 3.3M 3.5M iwslt 186K 2.7M 1.8M
news 200K 5.1M 5.0M un 3.7M 12.4M 12.3M
ep 1.9M 48.7M 51.0M - - - -
cc 2.3M 53.9M 57.5M - - - -

Test Set Sent. TokDE TokEN Corpus Sent. TokAR TokEN

tune 2452 42K 44K tune 2456 48K 52K
test-11 1433 22K 23K test-11 1199 21K 24K
test-12 1700 25K 26K test-12 1702 30K 32K
test-13 1363 19K 20K test-13 1169 26K 28K

Table 2: Statistics of the German-English and Arabic-English training corpora in terms of Sen-
tences and Tokens (Source/Target). Tokens are represented in Millions. ep = Europarl, cc =
Common Crawl, un = United Nations

and an output embedding layer of 750. Only one hidden layer is used with NCE4 to allow faster
training and decoding. Training was done using mini-batch size of 1000 and using 100 noise
samples. We train the out-domain NNJM models using the same vocabulary as the in-domain
vocabulary. All models were trained for 25 epochs.

Machine Translation Settings: We followed Birch et al. (2014) to train a Moses system
Koehn et al. (2007) with the following settings: maximum sentence length of 80, Fast-Align
(Dyer et al., 2013) for word-alignments, an interpolated Kneser-Ney smoothed 5-gram language
model (Schwenk and Koehn, 2008) with KenLM (Heafield, 2011) for querying, lexicalized re-
ordering (Galley and Manning, 2008) and other default parameters. We used Moses implemen-
tations of OSM and NNJM as a part of their respective baseline systems. Arabic OOVs were
translated using an unsupervised transliteration module (Durrani et al., 2014b) in Moses. We
used k-best batch MIRA (Cherry and Foster, 2012) for tuning.5

4.1 Results: Model Weighting
We first discuss the results of applying mixture modeling approach. The MT systems are trained
on a concatenation of all in- and out-domain data. The OSM and NNJM models used in baseline
MT systems were also trained on the concatenated data.

Linear interpolation (OSMln) based on EM-weighting shows significant improvements
with average BLEU gains of +0.6 in DE-EN and +0.9 in AR-EN over the baseline system Bcat
(see Table 3).6 One reason for better gains in AR-EN is the fact that the out-domain UN data

4Training NNJM with backpropagation could be prohibitively slow because for each training instance, the softmax
layer requires a summation over the entire output vocabulary One way to avoid this repetitive computation is to use
a Noise Contrastive Estimation or NCE (Gutmann and Hyvärinen, 2010) of the loss function. NCE has been recently
used in neural language models (Vaswani et al., 2013; Mnih and Teh, 2012).

5All systems were tuned three times.
6We carried out additional experiments by linearly interpolating class-based OSM models Durrani et al. (2014a).

We used the mkcls utility in GIZA to cluster source and target vocabularies into 50 classes. Class-based OSM models
were trained on each domain and interpolated in the same way as we did for the word forms. This however, did not yield
any significant improvements on top of what was already achieved from the interpolation of word-based OSM. We also
tried interpolating POS, morph and lemma-based OSM-models but did not gain any further improvement. Results are
ommitted from the paper.



OSM Interpolation (German-English)

System test11 test12 test13 Avg.

Bcat 35.8 31.1 27.6 31.5

OSMln 36.6 +0.8 31.9 +0.8 27.7 +0.1 32.1 +0.6
OSMlg 35.4 -0.4 31.1 ± 0.0 27.4 -0.2 31.3 -0.2

OSM Interpolation (Arabic-English)

Bcat 26.4 29.2 29.9 28.5

OSMln 27.3 +0.9 30.0 +0.8 30.8 +0.9 29.4 +0.9
OSMlg 25.8 -0.6 28.7 -0.5 29.4 -0.5 28.0 -0.5

Table 3: OSM Interpolation OSMln = Linear, OSMlg = Log-linear

NNJM Interpolation (German-English)

System test11 test12 test13 Avg.

Bcat 35.6 31.3 27.4 31.4

NNJMln 36.2 +0.6 31.8 +0.5 27.1 -0.3 31.7 +0.3
NNJMlg 36.1 +0.5 32.1 +0.8 27.2 -0.2 31.8 +0.4

NNJM Interpolation (Arabic-English)

Bcat 26.6 29.4 30.1 28.7

NNJMln 26.7 +0.1 30.2 +0.8 30.3 +0.2 29.1 +0.4
NNJMlg 26.8 +0.2 30.2 +0.8 30.5 +0.4 29.2 +0.5

Table 4: NNJM Interpolation NNJMln = Linear, NNJMlg = Log-linear

is much harmful for the task at hand. On the contrary additional data in DE-EN is helpful (see
also the results in next section for more information). Log-linear interpolation of OSM models
(OSMlg) performs much worse than Bcat in both language pairs. In the log-linear model, all
sub-models are queried separately. An operation sequence from the out-domain data that is
unknown to the in-domain OSM, gets high probability7 and is ranked higher in the search space.
On the contrary, the same gets down-weighted in a linearly interpolated global model.

Both linear and log-linear interpolation of the NNJM models showed improvements over
the baseline system Bcat (refer to Table 4). Log-linear interpolation (NNJMlg) performed
slightly better in both cases. Notice that NNJMlg does not face the same problem as OSMlg

because all NNJM models are trained using the in-domain vocabulary with a low probability as-
signed to the out-domain UNKs.8 See Joty et al. (2015) for more details on our novel handling

7Due to probability mass assigned to UNK sequences.
8In order to reduce the training time and to learn better word representations, neural models are trained on most

frequent vocabulary words only and low frequency words are represented under a class of unknown words, unk. This
results in a large number of n-gram sequences containing at least one unk word and thereby, makes unk a highly
probable word for the model. As a result of this discrepancy, sentences with more number of unk words will be
selected. To solve this problem we created a separate class for out-domain unko words. We train the in-domain model
by adding a few dummy sequences containing unko occurring on both source and target sides ensuring that out-domain
unknown words get minimal probabilities.



%age German-English Arabic-English

MML OSM NNJM MML OSM NNJM

0% 35.4 35.4 35.4 27.2 27.2 27.2
5% 36.0 36.0 36.2 27.6 27.7 27.6
10% 36.2 36.3 36.5 26.9 27.3 27.1
20% 36.4 36.8 36.9 26.8 27.0 27.0
40% 36.3 36.6 36.7 26.6 26.8 26.6
100% 35.6 35.6 35.6 26.6 26.6 26.6

Table 5: MML, OSM and NNJM-based data selection, evaluated using test2011

Data Selection (German-English)

System test11 test12 test13 Avg.

B100% 35.8 31.1 27.6 31.5
B0% 35.4 31.3 25.5 30.7

MML20% 36.4 +0.6 31.4 +0.3 27.7 +0.1 31.8 +0.3

OSM20% 36.8 +1.0 31.5 +0.4 27.7 +0.1 32.0 +0.5
NNJM20% 36.9 +1.1 31.6 +0.5 27.7 +0.1 32.1 +0.6

Data Selection (Arabic-English)

B100% 26.4 29.2 29.9 28.5
B0% 27.2 30.0 30.2 29.1

MML5% 27.6 +0.4 30.5 +0.5 31.0 +0.8 29.7 +0.6

OSM5% 27.7 +0.5 30.6 +0.6 31.0 +0.8 29.8 +0.7
NNJM5% 27.6 +0.4 30.5 +0.5 31.1 +0.9 29.7 +0.6

Table 6: Data Selection

of UNK words in the NNJM model.

4.2 Results: Data Selection

We selected 0%, 2.5%, 5%, 10%, 20%, 40% and 100% out-domain data and evaluated on
test2011 to select the best percentage. See Table 5 for results on each selected percentage.
Table 6 shows that the out-domain data is helpful in the case of DE-EN and harmful in the
case of AR-EN; compare B100% (all data) versus B0% (in-domain data only). MML-selection
improves the baseline by +0.3 and +0.6 in case of DE-EN and AR-EN respectively. OSM and
NNJM-based selection gave similar improvements with slightly better results than MML. We
found that the amount of overlap in data selected by the three models is roughly 63% in DE-EN
and 71% in AR-EN.

5 Related Work

Previous work on domain adaptation in MT can be broken down broadly into two main cate-
gories namely data selection and model adaptation.



5.1 Data Selection

Data selection has shown to be an effective way to discard poor quality or irrelevant training
instances, which when included in the MT systems, hurts its performance. The idea is to score
the out-domain data using model trained from the in-domain data and apply a cut-off based on
the resulting scores. The MT system can then be trained on a subset of the out-domain data that
is closer to in-domain. Selection based methods can be helpful to reduce computational cost
when training is expensive and also when memory is constrained. Data selection was earlier
done for language modeling using information retrieval techniques (Hildebrand et al., 2005) and
using perplexity measure (Moore and Lewis, 2010). Axelrod et al. (2011) further extended the
work of Moore and Lewis (2010) to translation model adaptation by using both source side and
target side language models. Duh et al. (2013) used recurrent neural network language model
instead of an ngram-based language model to do the same. Translation model features were
used recently by Liu et al. (2014); Hoang and Sima’an (2014) to do data selection.

5.2 Model Adaptation

The downside of data selection is that finding an optimal cut-off threshold is a time consuming
process. Therefore rather than filtering less useful data, an alternative way is to down-weight it
and boost the data closer to the in-domain. It is robust than selection since it takes advantage
of the complete out-domain data with intelligent weighting towards the in-domain. Matsoukas
et al. (2009) proposed a classification-based sentence weighting method for adaptation. Foster
et al. (2010) extended this by weighting phrases rather than sentence pairs. Other researchers
have carried out weighting by merging phrase-tables through linear interpolation (Finch and
Sumita, 2008; Nakov and Ng, 2009) or log-linear combination (Foster and Kuhn, 2009; Bisazza
et al., 2011; Sennrich, 2012) and through phrase training based adaptation (Mansour and Ney,
2013). Chen et al. (2013b) used vector space model for adaptation at phrase level. Every phrase
pair is represented as a vector where every entry in the vector reflects its relatedness with each
domain. Chen et al. (2013a) also applied mixture model adaptation for reordering model. Joty
et al. (2015) performed model weighting by regularizing the loss function towards the in-domain
model directly inside neural network training. They also used NNJM model as their basis.

Other work on domain adaptation includes but not limited to studies that focus on topic
modeling (Eidelman et al., 2012; Hasler et al., 2014), dynamic adaptation where no in-domain
data is available (Sennrich et al., 2013; Mathur et al., 2014) and sense disambiguation (Carpuat
et al., 2013).

6 Conclusion

We targeted an unexplored area of using bilingual language models for domain adaptation. We
applied model weighting and data selection techniques using OSM and NNJM models. Both
methods were shown to be effective in the target translation tasks. Interpolating multi-domain
models gave an average improvement of up to +0.9 BLEU points using OSM and +0.5 using
NNJM. We also used NNJM and OSM models for data selection using differences in cross
entropy and showed improvements of up to +0.6 BLEU points. The code will be contributed to
Moses git repository.
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