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Abstract

This paper describes QCRI’s machine translation sys-
tems for the IWSLT 2016 evaluation campaign. We partic-
ipated in the Arabic→English and English→Arabic tracks.
We built both Phrase-based and Neural machine translation
models, in an effort to probe whether the newly emerged
NMT framework surpasses the traditional phrase-based sys-
tems in Arabic-English language pairs. We trained a very
strong phrase-based system including, a big language model,
the Operation Sequence Model, Neural Network Joint Model
and Class-based models along with different domain adap-
tation techniques such as MML filtering, mixture modeling
and using fine tuning over NNJM model. However, a Neural
MT system, trained by stacking data from different genres
through fine-tuning, and applying ensemble over 8 models,
beat our very strong phrase-based system by a significant 2
BLEU points margin in Arabic→English direction. We did
not obtain similar gains in the other direction but were still
able to outperform the phrase-based system. We also applied
system combination on phrase-based and NMT outputs.

1. Introduction
We describe QCRI’s phrase-based and Neural MT systems.
We participated in the Arabic-to-English and English-to-
Arabic MT tracks. Our translation engines have been his-
torically based on the phrase-based system trained using the
Moses toolkit [1], but during the course of this evaluation,
we made a transition towards the newly emerged Neural MT
framework [2], using Nematus, a toolkit used by the top per-
forming team [3], during the recent WMT campaign.

An interesting challenge associated with the IWSLT cam-
paign is the problem of domain adaptation. The in-domain
data based on TED talks is available in very little quan-
tity compared to the out-domain UN corpus [4], which has
been found to be harmful previously when simply concate-
nated to the training [5]. In this year’s IWSLT, two addi-
tional data resources Opus subtitles [6] and the QED corpus
[7] were introduced. The latter was also used as an official
test-set. Therefore apart from exploring phrase-based versus
Neural MT, we geared ourselves towards adapting our sys-
tem towards TED and QED talks in this multi-domain sce-
nario. With these goals in mind we re-explored both model
weighting and data filtering techniques, in these new data set-
tings. Below we itemize the most successful attributes of our

phrase-based system:

• We applied MML-based data selection [8] to the UN
and Open Sub-title data, with the goals of filtering out
harmful data.

• We trained OSM models [9] on separate corpora, and
interpolated them [10] by optimizing perplexity on the
tuning-set. We also tried this on the OSM models
trained on the word classes [11].

• We tried the fine-tuning method of training the NNJM
model on the out-domain data and fine-tuning with the
in-domain TED data [12].

• We trained big language models using all the English
mono data available from the WMT campaign and
giga word corpus for Arabic.

We trained our Neural MT system using the Nematus
toolkit. We used Bidirectional RNN’s for the encoder, 1024
LSTM units, and a word embedding size of 500. Below we
itemize what worked when training the neural MT system:

• We trained our baseline model on all of the UN corpus,
then continued training with the Open subtitles corpus,
and finally fine-tuned with the in-domain data

• We fine-tuned all of our models without freezing any
layers in the network, since we had sufficient amount
of data to train on.

• We used dropout when fine-tuning with in-domain
data, since it is relatively small compared to the UN
and Open subtitle data.

• We trained our final models with an ensemble of the
last eight models, where each model was fine-tuned
with the in-domain data.

Finally we applied system combination over the outputs
of best Neural MT and phrase-based systems using MEMT
[13]. Our efforts were mainly focused towards the AR→EN
TED task. In the end we just replicated our best system for
the EN→AR direction and the QED task. For our best Neu-
ral MT system, we were unable to use an ensemble in the
EN→AR direction, since we could not train several compa-
rable models to combine.



TED QED UN OPUS
Stats 240K 153K 18.5M 40M

Table 1: Number of Sentences in Parallel Data

Segmentation ted-11 ted-12 ted-13 ted-14 Avg
MADA 27.5 30.6 30.4 26.3 28.7
Farasa 27.4 30.3 30.2 26.4 28.6

Table 2: MADA versus Farasa Tokenization

2. Data Settings and Pre/Post Processing
We trained our systems using the data made available
through IWSLT 2016 campaign. This contained two in-
domain data sets TED talks and QED corpus [14] and two
out-domain data sets UN corpus [4] and OPUS data [6].
The statistics are shown in Table 1. For language model we
trained using the target side of the parallel corpus and all the
available English data from the recent WMT campaign [15],
and GigaWord and OPUS mono corpus for Arabic.

We segmented Arabic data using both MADAMIRA and
Farasa. We found MADAMIRA [16] performed 0.1 BLEU
points better than Farasa [17] (See Table 2) and decided to
use it for the competition. We tokenized the English side
using standard tokenizer of Moses. For English→Arabic,
outputs were detokenized using MADA detokenizer. Before
scoring the output, we normalized them and reference trans-
lations using the QCRI normalizer [5].

3. Phrase-based System
3.1. Baseline Settings

We trained phrase-based Moses system, with the settings de-
scribed in [18]: a maximum sentence length of 80, Fast-
Aligner for word-alignments [19], an interpolated Kneser-
Ney smoothed 5-gram language model [20], lexicalized re-
ordering model [21], a 5-gram operation sequence model
[22], a 14-gram NNJM model [23], with the baseline set-
tings described in [24]. We used default distortion limit, 100-
best translation options, phrase-length of 5, monotone-over-
punctuation heuristic, cube-pruning with a limit of 1000 dur-
ing tuning 5000 during test. We used k-best batch MIRA [25]
for tuning. We used cased BLEU [26] to measure progress.

3.2. Data Selection

Due to our experience from previous competitions, we were
wary of the fact that simply adding the UN data is harmful
for the AR→MT system, we therefore selected data through
MML filtering [8]. We selected 2.5%, 3.75%, 5%, 10% and
30% of the UN data and trained MT pipeline by concate-
nating the selected data with the in-domain data. We did not
include Opus data (40 Million Sentences) and NNJM in these
experiments to get the results quickly. Table 3 shows the re-
sults. We found 3.75% (≈685k sentences) to be the optimal
threshold. Alternative to data selection, we tried training in-

Percentage ted-11 ted-12 ted-13 ted-14 Avg
ID 27.5 30.6 30.4 26.3 28.7
2.5% 27.3 30.6 31.5 27.0 29.1
3.75% 27.1 30.7 31.6 27.2 29.2
5% 27.1 30.4 31.4 27.1 29.1
10% 27.0 30.2 31.5 27.2 29.0
30% 26.3 29.5 30.9 26.7 28.4
Full 25.3 28.7 29.4 25.5 27.3
Back-off PT 27.0 30.4 31.5 27.3 29.1
3.75%+ 1

2
OPUS 28.2 32.4 32.3 28.6 30.4

Table 3: Data Selection using MML and Back-off PT

System ted-11 ted-12 ted-13 ted-14 Avg
Baseline 28.2 32.4 32.3 28.6 30.4
+bigLM 28.3 32.8 33.2 29.2 30.9

Table 4: Bigger Language Model

and out-domain phrase-tables separately and using the out-
domain phrase-table only as a back-off. Second last row of
Table 3 shows results. While it gave improvement on top of
the baseline system, it was slightly behind MML filtering.

We then tried to find optimal cut-off on the OPUS data,
and selected 20 Million sentences (half of the Opus). Our
best systems used 3.75% of the UN data and half of the Opus
data. Adding the selected Opus data gave an average im-
provement of +1.2 BLEU points.

3.3. Language Model

We trained bigger language model by using all the available
English data from the recent WMT campaign1 and target-
side of the parallel data. A Kneser-Ney smoothed 5-gram
language model was trained on each sub-corpus individually
and then interpolated to minimize perplexity on the target
part of the monolingual data. We were able to obtain a gain
of +0.5 using bigger language model. See Table 4.

3.4. Interpolation of Operation Sequence Models

The OSM model has been a regular feature of the phrase-
based pipeline in the competition grade systems. It is a joint
sequence translation model which integrates reordering. [10]
recently found that an OSM model trained on plain concate-
nation of data is sub-optimal and can be improved by training
OSM models on each domain individually and interpolating
them by minimizing perplexity on the in-domain tune-set.
Table 5 shows that using interpolated OSM model (OSMi)
instead of the one trained on plain concatenation (OSMc)
gives an average improvement of +0.6 BLEU points.

3.5. NNJM Adaptation

We also explored the award winning Neural Network Joint
Model (NNJM) in our pipeline and tried to adapt it towards
the in-domain data. We trained an NNJM models on the UN
and Opus data for 25 epochs and then fine-tuned [12] it by

1http://www.statmt.org/wmt16/translation-task.html



System ted-11 ted-12 ted-13 ted-14 Avg
OSMc 28.3 32.8 33.2 29.2 30.9
OSMi 29.0 33.5 33.8 29.7 31.5

Table 5: Interpolated Operation Sequence Model

System ted-11 ted-12 ted-13 ted-14 Avg
Baseline 29.0 33.5 33.8 29.7 31.5
+NNJM 29.8 34.1 34.4 30.1 32.1
+FT(UN) 29.7 33.8 33.9 30.2 31.9
+FT(OPUS) 30.1 34.1 34.6 30.3 32.3

Table 6: Neural Network Joint Model + Different Adaptation
Methods

running for 25 more epochs on the in-domain data. Because
the data is huge, the entire training took 1.5 months of wall-
clock time. Table 6 shows results. The NNJM model gave
significant improvement (+0.6) on top of baseline which does
not include it. We found fine-tuning method to give slight
gains (+0.2) when the baseline model was trained on the
Opus data. On the contrary, fine-tuning did not help when
the model trained was on UN.

3.6. Class-based Models

We explored the use of automatic word clusters in phrase-
based models [11]. We used 50 classes, obtained by run-
ning mkcls. The clusters ids were included in the phrase-
table. We additionally trained in-domain language model us-
ing word-classes and interpolated OSM on word-classes. But
we only saw very small improvements using word classes.

3.7. Handling Unknown Words

We tried to handle OOV words using drop-oov and
through transliteration [27, 28]. The former worked slightly
better and was used in the best system. Of course the gains
from the two methods are additive because they are address-
ing different OOVs, but there’s no good way to automatically
find which word to drop and which one to transliterate.

3.8. Final System

Table 9 shows incremental progress on this Arabic→English
language pair. Our best system included MML selected UN
and Opus corpora, big language model, interpolated OSM
and fine-tuned NNJM models. We we used drop-oov op-
tion to handle unknown words.

3.9. English-to-Arabic Systems

We did not do detailed experiments for the English→Arabic
direction because of computational limitations, but simply
replicated what worked for the Arabic→English direction.

System ted-11 ted-12 ted-13 ted-14 Avg
Baseline 30.1 34.1 34.6 30.3 32.3
Class-based 30.3 34.2 34.7 30.4 32.4

Table 7: Using Word Classes

System ted-11 ted-12 ted-13 ted-14 Avg
Baseline 30.3 34.2 34.7 30.4 32.4
Drop-OOV 30.5 34.2 35.0 30.5 32.6
Transliteration 30.4 34.2 34.7 30.6 32.5

Table 8: Handling OOVs

System ted-11 ted-12 ted-13 ted-14 Avg
Baseline 27.4 30.3 30.2 26.4 28.7
+Selected UN 27.1 30.7 31.6 27.2 29.2
+Selected OPUS 28.2 32.4 32.3 28.6 30.4
+bigLM 28.3 32.8 33.2 29.2 30.9
+OSMi 29.0 33.5 33.8 29.7 31.5
+NNJM 29.8 34.1 34.4 30.1 32.1
+FT(OPUS) 30.1 34.1 34.6 30.3 32.3
Drop-OOV 30.5 34.2 35.0 30.5 32.6

Table 9: Incremental Progress Arabic-to-English System

Table 10 shows progress on this language pair. The baseline
system (ID) was trained on the the TED data and target side
of all the permissible parallel data. In the second row, we
added all the parallel data except for the UN. In the third row
we additionally added the UN data that we selected in the
Arabic→English direction. Additional parallel data gives an
average improvement of +1.4 BLEU point. Then we added
an NNJM model trained on in-domain TED data on top of
this system to improve it by +0.8. Adding GigaWord and
monolingual OPUS data (another 20M Sentences other than
the target-side of the parallel data) gave an improvement of
+0.3. Finally we replaced the baseline NNJM with the one
trained on OPUS data and fine-tuned with the in-domain data
to get our best system.

3.10. QED Systems

We simply replicated QED systems by replacing QED cor-
pus to be in-domain data, instead of TED data. We used
the same UN data that we selected for our Arabic→English
system, therefore our phrase-tables remain the same. The
main changes are caused when training adapted OSM and
NNJM models. For NNJM we simply fine tune with QED
corpus instead of the TED corpus. For interpolated OSM,
we concatenated TED and QED corpus and build OSM on it,
which is then interpolated with the OSM models trained on
the selected UN and Opus data. We used IWSLT tuning to
get the interpolation weights. This way the OSM sub-model

System ted-11 ted-12 ted-13 ted-14 Avg
ID 14.8 15.6 16.7 14.5 15.4
+Parallel 15.5 16.4 18.2 16.3 16.6
+MML(UN) 15.6 16.3 18.4 16.7 16.8
+NNJM 16.5 17.4 19.2 17.4 17.6
+bigLM 16.6 17.6 20.0 17.4 17.9
+NNJM(FT) 16.7 17.9 20.2 17.7 18.1

Table 10: Incremental Progress English-to-Arabic System



System ted-11 ted-12 ted-13 ted-14 Avg
30%+FT(TED) 27.2 31.4 30.8 27.1 29.1
30%+TED+FT(TED) 27.2 30.8 30.1 25.8 28.5

Table 11: Fine Tuning on Out-domain versus Concatenation
– Models run for 3 epochs

created from TED+QED corpus gets best weights. We also
retrained the language model in this similar fashion. We used
the tuning weights obtained from our best TED systems and
replaced the TED adapted OSM, NNJM and language mod-
els with their QED adapted variants.

4. Neural Machine Translation
4.1. Pre/Post-processing

We used a similar pre/post-processing pipeline for Neural
MT as our phrase-based systems (Section 2), and addition-
ally applied BPE [29] before training them. Our BPE mod-
els are trained separately for both the Arabic and English
datasets instead of jointly training them, since the charac-
ter set differs between the languages. We limited the number
of operations to 59,500, as suggested in [29]. We experi-
mented with BPE models trained on the TED data, and on
the concatenation of the TED and out-domain data. We did
not see any considerable difference in performance between
these models. Thus we used the BPE model trained on the
TED data for the experiments reported in this paper.

4.2. Baseline

We used default parameters in Nematus to train our systems:
a batch size of 80, source and target vocabulary of 50K en-
tries each, 1024 LSTM units, and the embedding layer size of
500. Baseline system were trained using only TED corpus.

4.3. Fine Tuning on Concatenation versus OD

The best phrase based systems are usually trained by con-
catenating in and out-domain data. On the other hand, deep
learning systems are trained on the out-domain data first, and
then fine-tuned with in-domain data. We experimented with
both strategies. In the interest of time we selected 30% of
the UN data using MML filtering (Table 3). We trained two
systems, one by concatenating the in-domain data with the
selected (30%) UN data and other just on the selected data.
Then we fine-tuned both the models with the in-domain TED
data after running them for 3 epochs. Table 11 shows that
fine-tuning a system trained on out-domain data only, out-
performs the system fine-tuned on concatenation.

4.4. Fine-tuning Variants and Dropouts

The default version of Nematus applies fine-tuning by freez-
ing the weights of embedding layer. The intuition behind
freezing a layer is to not allow the weights in that layer to
change with additional data. This is sometimes useful when
we can learn certain layers better from out-domain data. One

System ted-11 ted-12 ted-13 ted-14 Avg
5% 25.8 29.4 29.3 25.0 27.4
5% (Frozen) 24.7 27.7 27.4 23.9 25.9
30% 27.2 30.8 30.1 25.8 28.5
30% (Frozen) 26.5 30.4 28.9 25.0 27.7

Table 12: Fine-tuning with/without freezing the Embeddings

System ted-11 ted-12 ted-13 ted-14 Avg
5% + FT(TED) 25.8 29.4 29.3 25.0 27.4
30% + FT(TED) 28.4 32.7 32.9 27.8 30.4
Full + FT(TED) 28.1 32.3 31.6 27.0 29.8
30% + FT(OPUS) 26.1 30.6 32.5 27.1 29.1
Full + FT(OPUS) 28.2 31.7 34.3 29.2 30.8

Table 13: Data selection

such layer in our case is the word embedding layer. We tried
a variation in which we do not freeze any layer. This lat-
ter variant was found to outperform the default setting (See
Table 12).

Dropouts are found to be useful in NN training, when the
training data is small. We experimented with using dropouts
in our experiments, but did not find any significant differ-
ence. Hence we decided to use it only when fine-tuning
with the in-domain data (TED/QED), since both of the other
datasets (UN and OPUS) were big and did not pose any risk
of inducing the problem of overfitting.

4.5. Data Selection

Since we found data selection useful in the phrase based sys-
tem, we also trained our neural systems using 5%, 30% and
100% of the UN data. In these experiments, we concatenated
the 5% and 30% of the UN data with the in-domain data.
To evaluate the most promising models, we trained all of the
models until the learning plateaued, and then fine-tuned these
models with in-domain data.2 The results are shown in in Ta-
ble 13. Using only 5% of the data proved harmful, and the
system did not generalize as well as the other models. The
model trained on 30% of the data performed better than the
model trained on all the data, by 0.7 BLEU points.

In our subsequent experiments we tried to verify if this
finding holds when we add the OPUS data. We therefore
trained two systems by fine-tuning 30% selected UN data or
full UN data using OPUS. Here the results flipped and the
we found that model that used all of the UN data performed
better (Compare last two rows in Table 13). Therefore, we
decided to focus our efforts on the model trained on the entire
UN data for all of the following experiments.

4.6. Ensemble

Ensembling models has shown to give a consistent boost in
performance in past best performing systems [3]. We there-
fore experimented with several variations. We found the best

2Because we were running experiments in parallel, we were not aware at
this point that fine-tuning on out-domain is a better strategy



System ted-11 ted-12 ted-13 ted-14 Avg
Full + FT(OPUS) 28.2 31.7 34.3 29.2 30.8

+ FT(TED) 31.8 36.2 36.1 30.8 33.7
Ensemble (8) 32.5 37.0 37.2 31.5 34.6

Table 14: Ensembling over 8 Fine-tuned Models

System ted-11 ted-12 ted-13 ted-14 Avg
Baseline 24.0 26.4 25.2 22.4 24.5
UN 15.9 17.9 20.0 16.3 17.5
+OPUS 28.2 31.7 34.3 29.2 30.8
+TED 31.8 36.2 36.1 30.8 33.7
+Ensemble 32.5 37.0 37.2 31.5 34.6

Table 15: Arabic-to-English NMT System progress

performing combination by fine-tuning the last eight mod-
els of the UN+OPUS system, and then ensemble these eight
fine-tuned models. Performance improvements from the en-
semble are shown in Table 14. The second row shows sys-
tems when we fine tune our best system in Table 13 with the
in-domain TED data. In the last row we perform ensemble.

4.7. Final System

Our final system was trained by first using all of the UN data.
We then continued training on OPUS data. Once learning
had plateaued on the OPUS data, we took the last eight mod-
els which were very similar in performance, and fine-tuned
each of the them using TED data. We then combined these
eight fine-tuned models in an ensemble as our final system.
The progress is shown in Table 15. We used the same strat-
egy for the QED systems by fine-tuning the last eight OPUS
models with QED data, and combining these in an ensemble.

4.8. English-to-Arabic Systems

We used insights gained from our Arabic-to-English system
experiments to train our English→Arabic systems. Our final
model for both TED and QED was first trained on all of the
UN data, followed by the OPUS data, and finally fine-tuned
with the in-domain data. The progress is shown in Table 16.

5. System Combination
We combined hypotheses produced by our best Phrase-based
and Neural MT systems. For this purpose we used Multi-
Engine MT system, or MEMT [13]. The results are shown
in Table 17. We did not gain any substantial improvements
using system combination. Small improvements were ob-
tained in the Arabic→English direction baring test-2012. On

System ted-11 ted-12 ted-13 ted-14 Avg
UN 9.1 9.3 11.2 9.4 9.8
+OPUS 10.8 11.2 13.4 10.9 11.6
+TED 17.1 18.9 20.1 17.7 18.5

Table 16: English-to-Arabic NMT System progress

System ted-11 ted-12 ted-13 ted-14 Avg
Arabic →English

Phrase-based 30.5 34.2 35.0 30.5 32.6
Neural MT 32.5 37.0 37.2 31.5 34.6
System Comb 32.8 36.5 37.4 31.7 34.6

English →Arabic
Phrase-based 16.7 17.9 20.2 17.7 18.1
Neural MT 17.1 18.9 20.1 17.7 18.5
System Comb 16.8 19.1 20.7 17.6 18.6

Table 17: Results for System Combination

System ted-15 ted-16 qed-15
Arabic →English

Primary 34.1 31.8 28.1
Contrastive 33.7 31.5 28.1

English →Arabic
Primary 19.5 18.4 23.1
Contrastive 19.5 18.1 22.9

Table 18: Results on Official Test Sets

the contrary significant improvement was obtained only in
test-2013 in the English→Arabic direction. Table 18 shows
results on the official test-sets.

6. Summary

We trained a very strong phrase-based system with SOTA
features such as OSM, NNJM and big LM. The system im-
proved greatly by applying domain adaptation. To this end
we applied MML-based filtering, interpolated OSM and fine-
tuning of NNJM models. Overall, our phrase-based system
achieved a gain of 4 BLEU points on top of the baseline sys-
tem. We also applied data selection for training our NMT.
However, the NMT systems quickly overfit and did not per-
form well. Our experiments showed that the NMT system
trained on the full UN data performed best, and the final
NMT system made use of all the available out-of-domain
data. However, the training was performed incrementally,
starting with UN data for 50k iterations, fine tuned on OPUS
for 25k more iterations and then fine tuned the final model
using TED talks for a few iterations. We simply replicated
our settings to train QED systems. Finally we applied sys-
tem combination of the two systems using MEMT.

While it is computationally expensive, we found train-
ing a neural MT system much simpler than a competitive
phrase-based system, where a lot of sub-components need to
be optimized independently to reach the best configuration.
On the contrary, an NMT system requires least supervision.
Secondly once a neural system is trained, the effort can be
easily reused to adapt the system towards another domain,
as in this case we simply fine-tuned our UN+OPUS system
with the QED corpus. On the contrary, almost all the sub-
component of a phrase-based system had to be retrained to
adapt the system towards QED corpus.
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