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Abstract

We present novel models for domain adap-
tation based on the neural network joint
model (NNJM). Our models maximize
the cross entropy by regularizing the loss
function with respect to in-domain model.
Domain adaptation is carried out by as-
signing higher weight to out-domain se-
quences that are similar to the in-domain
data. In our alternative model we take a
more restrictive approach by additionally
penalizing sequences similar to the out-
domain data. Our models achieve better
perplexities than the baseline NNJM mod-
els and give improvements of up to 0.5
and 0.6 BLEU points in Arabic-to-English
and English-to-German language pairs, on
a standard task of translating TED talks.

1 Introduction

Rapid influx of digital data has galvanized the use
of empirical methods in many fields including Ma-
chine Translation (MT). The increasing availabil-
ity of bilingual corpora has made it possible to
automatically learn translation rules that required
years of linguistic analysis previously. While ad-
ditional data is often beneficial for a general pur-
pose Statistical Machine Translation (SMT) sys-
tem, a problem arises when translating new do-
mains such as lectures (Cettolo et al., 2014),
patents (Fujii et al., 2010) or medical text (Bojar
et al., 2014), where either the bilingual text does
not exist or is available in small quantity. All do-
mains have their own vocabulary and stylistic pref-
erences which cannot be fully encompassed by a
system trained on the general domain.

Machine translation systems trained from a sim-
ple concatenation of small in-domain and large
out-domain data often perform below par be-
cause the out-domain data is distant or over-

whelmingly larger than the in-domain data. Ad-
ditional data increases lexical ambiguity by in-
troducing new senses to the existing in-domain
vocabulary. For example, an Arabic-to-English
SMT system trained by simply concatenating in-
and out-domain data translates the Arabic phrase
“PAJ
�J 	kCË YK@ 	QË @ ÉÒmÌ'@ �éÊ¾ ��Ó 	á«” to “about the
problem of unwanted pregnancy”. This translation
is incorrect in the context of the in-domain data,
where it should be translated to “about the prob-
lem of choice overload”. The sense of the Ara-
bic phrase taken from out-domain data completely
changes the meaning of the sentence. In this paper,
we tackle this problem by proposing domain adap-
tation models that make use of all the data while
preserving the in-domain preferences.

A significant amount of research has been car-
ried out recently in domain adaptation. The com-
plexity of the SMT pipeline, starting from cor-
pus preparation to word-alignment, and then train-
ing a wide range of models opens a wide horizon
to carry out domain specific adaptations. This is
typically done using either data selection (Mat-
soukas et al., 2009) or model adaptation (Foster
and Kuhn, 2007). In this paper, we further re-
search in model adaptation using the neural net-
work framework.

In recent years, there has been a growing in-
terest in deep neural networks (NNs) and word
embeddings with application to numerous NLP
problems. A notably successful attempt on the
SMT frontier was recently made by Devlin et
al. (2014). They proposed a neural network
joint model (NNJM), which augments streams of
source with target n-grams and learns a NN model
over vector representation of such streams. The
model is then integrated into the decoder and used
as an additional language model feature.

Our aim in this paper is to advance the state-of-
the-art in SMT by extending NNJM for domain
adaptation to leverage the huge amount of out-
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domain data coming from heterogeneous sources.
We hypothesize that the distributed vector rep-
resentation of NNJM helps to bridge the lexical
differences between the in-domain and the out-
domain data, and adaptation is necessary to avoid
deviation of the model from the in-domain data,
which otherwise happens because of the large out-
domain data.

To this end, we propose two novel extensions
of NNJM for domain adaptation. Our first model
minimizes the cross entropy by regularizing the
loss function with respect to the in-domain model.
The regularizer gives higher weight to the training
instances that are similar to the in-domain data.
Our second model takes a more conservative ap-
proach by additionally penalizing data instances
similar to the out-domain data.

We evaluate our models on the standard task
of translating Arabic-English and English-German
language pairs. Our adapted models achieve bet-
ter perplexities (Chen and Goodman, 1999) than
the models trained on in- and in+out-domain data.
Improvements are also reflected in BLEU scores
(Papineni et al., 2002) as we compare these mod-
els within the SMT pipeline. We obtain gains of
up to 0.5 and 0.6 on Arabic-English and English-
German pairs over a competitive baseline system.

The remainder of this paper is organized as fol-
lows: Section 2 gives an account on related work.
Section 3 revisits NNJM model and Section 4 dis-
cusses our models. Section 5 presents the experi-
mental setup and the results. Section 6 concludes.

2 Related Work

Previous work on domain adaptation in MT can
be broken down broadly into two main categories
namely data selection and model adaptation.

2.1 Data Selection

Data selection has shown to be an effective way
to discard poor quality or irrelevant training in-
stances, which when included in an MT system,
hurts its performance. The idea is to score the out-
domain data using a model trained from the in-
domain data and apply a cut-off based on the re-
sulting scores. The MT system can then be trained
on a subset of the out-domain data that is closer
to in-domain. Selection based methods can be
helpful to reduce computational cost when train-
ing is expensive and also when memory is con-
strained. Data selection was done earlier for lan-

guage modeling using information retrieval tech-
niques (Hildebrand et al., 2005) and perplexity
measures (Moore and Lewis, 2010). Axelrod et
al. (2011) further extended the work of Moore and
Lewis (2010) to translation model adaptation by
using both source- and target-side language mod-
els. Duh et al. (2013) used a recurrent neural lan-
guage model instead of an ngram-based language
model to do the same. Translation model features
were used recently by (Liu et al., 2014; Hoang and
Sima’an, 2014) for data selection. Durrani et al.
(2015a) performed data selection using operation
sequence model (OSM) and NNJM models.

2.2 Model Adaptation

The downside of data selection is that finding an
optimal cut-off threshold is a time consuming pro-
cess. An alternative to completely filtering out
less useful data is to minimize its effect by down-
weighting it. It is more robust than selection since
it takes advantage of the complete out-domain data
with intelligent weighting towards the in-domain.

Matsoukas et al. (2009) proposed a
classification-based sentence weighting method
for adaptation. Foster et al. (2010) extended this
by weighting phrases rather than sentence pairs.
Other researchers have carried out weighting by
merging phrase-tables through linear interpolation
(Finch and Sumita, 2008; Nakov and Ng, 2009)
or log-linear combination (Foster and Kuhn,
2009; Bisazza et al., 2011; Sennrich, 2012)
and through phrase training based adaptation
(Mansour and Ney, 2013). Durrani et al. (2015a)
applied EM-based mixture modeling to OSM
and NNJM models to perform model weighting.
Chen et al. (2013b) used a vector space model for
adaptation at the phrase level. Every phrase pair is
represented as a vector, where every entry in the
vector reflects its relatedness with each domain.
Chen et al. (2013a) also applied mixture model
adaptation for reordering model.

Other work on domain adaptation includes but
not limited to studies focusing on topic models
(Eidelman et al., 2012; Hasler et al., 2014), dy-
namic adaptation without in-domain data (Sen-
nrich et al., 2013; Mathur et al., 2014) and sense
disambiguation (Carpuat et al., 2013).

In this paper, we do model adaptation using a
neural network framework. In contrast to pre-
vious work, we perform it at the (bilingual) n-
gram level, where n is sufficiently large to cap-
ture long-range cross-lingual dependencies. The
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generalized vector representation of the neural net-
work model reduces the data sparsity issue of tra-
ditional Markov-based models by learning better
word classes. Furthermore, our specially designed
loss functions for adaptation help the model to
avoid deviation from the in-domain data without
losing the ability to generalize.

3 Neural Network Joint Model

In recent years, there has been a great deal of ef-
fort dedicated to neural networks (NNs) and word
embeddings with applications to SMT and other
areas in NLP (Bengio et al., 2003; Auli et al.,
2013; Kalchbrenner and Blunsom, 2013; Gao et
al., 2014; Schwenk, 2012; Collobert et al., 2011;
Mikolov et al., 2013a; Socher et al., 2013; Hin-
ton et al., 2012). Recently, Devlin et al. (2014)
proposed a neural network joint model (NNJM)
and integrated it into the decoder as an additional
feature. They showed impressive improvements
in Arabic-to-English and Chinese-to-English MT
tasks. Let us revisit the NNJM model briefly.

Given a source sentence S and its correspond-
ing target sentence T , the NNJM model computes
the conditional probability P (T |S) as follows:

P (T |S) ≈
|T |∏
i

P (ti|ti−1 . . . ti−p+1, si) (1)

where, si is a q-word source window for the tar-
get word ti based on the one-to-one (non-NULL)
alignment of T to S. As exemplified in Figure 1,
this is essentially a (p + q)-gram neural network
LM (NNLM) originally proposed by Bengio et al.
(2003). Each input word i.e. source or target word
in the context is represented by a D dimensional
vector in the shared look-up layer L ∈ R|Vi|×D,
where Vi is the input vocabulary.1 The look-up
layer then creates a context vector xn representing
the context words of the (p+q)-gram sequence by
concatenating their respective vectors in L. The
concatenated vector is then passed through non-
linear hidden layers to learn a high-level represen-
tation, which is in turn fed to the output layer. The
output layer has a softmax activation over the
output vocabulary Vo of target words. Formally,
the probability of getting k-th word in the output
given the context xn can be written as:

P (yn = k|xn, θ) =
exp (wT

k φ(xn))∑|Vo|
m=1 exp (wT

mφ(xn))
(2)

1Note that L is a model parameter to be learned.

where φ(xn) defines the transformations of xn

through the hidden layers, and wk are the weights
from the last hidden layer to the output layer.
For notational simplicity, henceforth we will use
(xn, yn) to represent a training sequence.

By setting p and q to be sufficiently large,
NNJM can capture long-range cross-lingual de-
pendencies between words, while still overcom-
ing the data sparseness issue by virtue of its dis-
tributed representations (i.e., word vectors). A ma-
jor bottleneck, however, is to surmount the com-
putational cost involved in training the model and
applying it for MT decoding. Devlin et al. (2014)
proposed two tricks to speed up computation in
decoding. The first one is to pre-compute the hid-
den layer computations and fetch them directly as
needed during decoding. The second technique is
to train a self-normalized NNJM to avoid compu-
tation of the softmax normalization factor (i.e., the
denominator in Equation 2) in decoding. How-
ever, self-normalization does not solve the compu-
tational cost of training the model. In the follow-
ing, we describe a method to address this issue.

3.1 Training by Noise Contrastive Estimation
The standard way to train NNLMs is to maximize
the log likelihood of the training data:

J(θ) =

N∑
n=1

|Vo|∑
k=1

ynk log P (yn = k|xn, θ) (3)

where, ynk = I(yn = k) is an indicator vari-
able (i.e., ynk=1 when yn=k, otherwise 0). Op-
timization is performed using first-order online
methods, such as stochastic gradient ascent (SGA)
with standard backpropagation algorithm. Unfor-
tunately, training NNLMs are impractically slow
because for each training instance (xn, yn), the
softmax output layer (see Equation 2) needs to
compute a summation over all words in the output
vocabulary.2 Noise contrastive estimation or NCE
(Gutmann and Hyvärinen, 2010) provides an effi-
cient and stable way to avoid this repetitive com-
putation as recently applied to NNLMs (Vaswani
et al., 2013; Mnih and Teh, 2012). We can re-write
Equation 2 as follows:

P (yn = k|xn, θ) =
σ(yn = k|xn, θ)

Z(φ(xn),W)
(4)

where σ(.) is the un-normalized score and Z(.)
is the normalization factor. In NCE, we consider

2This would take few weeks for a modern CPU machine
to train a single NNJM model on the whole data.
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Figure 1: A simplified neural network joint model with noise contrastive loss, where we use 3-gram target
words (i.e., 2-words history) and a source context window of size 3. For illustration, the output yn is
shown as a single categorical variable (scalar) as opposed to the traditional one-hot vector representation.

Z(.) as an additional model parameter along with
the regular parameters, i.e., weights, look-up vec-
tors. However, it has been shown that fixing Z(.)
to 1 instead of learning it in training does not affect
the model performance (Mnih and Teh, 2012).

For each training instance (xn, yn), we add
M noise samples (xn, y

m
n ) by sampling ym

n from
a known noise distribution ψ (e.g., unigram,
uniform)M many times (i.e.,m= 1 . . .M ); see
Figure 1. NCE loss is then defined to discriminate
a true instance from a noisy one. Let C ∈ {0, 1}
denote the class of an instance with C = 1 indicat-
ing true and C = 0 indicating noise. NCE maxi-
mizes the following conditional log likelihood:

J(θ) =

N∑
n=1

[
log[P (C = 1|yn,xn, θ)]

+

M∑
m=1

log[P (C = 0|ym
n ,xn, ψ)]

]
(5)

=

N∑
n=1

[
log [P (yn|C = 1,xn, θ)P (C = 1|π)]

+

M∑
m=1

log [(P (ym
n |C = 0,xn, ψ))P (C = 0|π)]

− (M + 1) log Q
]

(6)

where Q = P (yn, C = 1|xn, θ, π) + P (ym
n , C =

0|xn, ψ, π) is a normalization constant. After re-
moving the constant terms, Equation 6 can be fur-
ther simplified as:

J(θ) =

N∑
n=1

|Vo|∑
k=1

[
ynk log σnk +

M∑
m=1

ym
nk log ψnk

]
(7)

where ψnk =P (ym
n = k|xn, ψ) is the noise dis-

tribution, σnk =σ(yn = k|xn, θ) is the unnormal-
ized score at the output layer (Equation 4), and ynk

and ym
nk are indicator variables as defined before.

NCE reduces the number of computations needed
at the output layer from |Vo| to M + 1, where M
is a small number in comparison with |Vo|. In all
our experiments we use NCE loss with M = 100
samples as suggested by Mnih and Teh (2012).

4 Neural Domain Adaptation Models

The ability to generalize and learn complex se-
mantic relationships (Mikolov et al., 2013b) and
its compelling empirical results gives a strong mo-
tivation to use the NNJM model for the problem of
domain adaptation in machine translation. How-
ever, the vanilla NNJM described above is limited
in its ability to effectively learn from a large and
diverse out-domain data in the best favor of an in-
domain data. To address this, we propose two neu-
ral domain adaptation models (NDAM) extending
the NNJM model. Our models add regularization
to its loss function either with respect to in-domain
or both in- and out-domains. In both cases, we first
present the regularized loss function for the nor-
malized output layer with the standard softmax,
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followed by the corresponding un-normalized one
using the noise contrastive estimation.

4.1 NDAMv1

To improve the generalization of word embed-
dings, NNLMs are generally trained on very large
datasets (Mikolov et al., 2013a; Vaswani et al.,
2013). Therefore, we aim to train our neural
domain adaptation models (NDAM) on in- plus
out-domain data, while restricting it to drift away
from in-domain. In our first model NDAMv1, we
achieve this by biasing the model towards the in-
domain using a regularizer (or prior) based on the
in-domain model. Let θi be an NNJM model al-
ready trained on the in-domain data. We train an
adapted model θa on the whole data, but regular-
izing it with respect to θi. We redefine the normal-
ized loss function of Equation 3 as follows:

J(θa) =
N∑

n=1

|Vo|∑
k=1

[
λ ynk logP (yn = k|xn, θa) + (1− λ)

ynk P (yn = k|xn, θi) logP (yn = k|xn, θa)
]

(8)

=

N∑
n=1

|Vo|∑
k=1

[
λ ynk log ŷnk(θa) +

(1− λ) ynk pnk(θi) log ŷnk(θa)
]

(9)

where ŷnk(θa) is the softmax output and pnk(θi)
is the probability of the training instance accord-
ing to the in-domain model θi. Notice that the loss
function minimizes the cross entropy of the cur-
rent model θa with respect to the gold labels yn

and the in-domain model θi. The mixing param-
eter λ ∈ [0, 1] determines the relative strength of
the two components.3 Similarly, we can re-define
the NCE loss of Equation 7 as:

J(θa) =

N∑
n=1

|Vo|∑
k=1

[
λ ynk log σnk + (1− λ) ynk

pnk(θi) log σnk +

M∑
m=1

ym
nklog ψnk

]
(10)

We use SGA with backpropagation to train this
model. The derivatives of J(θa) with respect to
the final layer weight vectors wj turn out to be:

∇wjJ(θa) =

N∑
n=1

[
λ (ynj − σnj) + (1− λ)

[pnj(θi)−
∑

k

ynk pnk(θi) σnj ]
]

(11)

3We used a balanced value λ = 0.5 for our experiments.

4.2 NDAMv2

The regularizer in NDAMv1 is based on an in-
domain model θi, which puts higher weights to
the training instances (i.e., n-gram sequences) that
are similar to the in-domain ones. This might
work better when the out-domain data is similar
to the in-domain data. In cases where the out-
domain data is different, we might want to build
a more conservative model that penalizes training
instances for being similar to the out-domain ones.

Let θi and θo be the two NNJMs already trained
from the in- and out-domains, respectively, and θo

is trained using the same vocabulary as θi. We de-
fine the new normalized loss function as follows:

J(θa) =

N∑
n=1

|Vo|∑
k=1

[
λ ynk log ŷnk(θa) + (1− λ) ynk

[pnk(θi)− pnk(θo)] log ŷnk(θa)
]

(12)

where ynk, ŷnk(θa), pnk(θi) and pnk(θo) are sim-
ilarly defined as before. This loss function min-
imizes the cross entropy of the current model θa

with respect to the gold labels yn and the differ-
ence between the in-domain model θi and the out-
domain model θo. Intuitively, the regularizer as-
signs higher weights to training instances that are
not only similar to the in-domain but also dissim-
ilar to the out-domain. The parameter λ ∈ [0, 1]
determines the strength of the regularization. The
corresponding NCE loss can be defined as follows:

J(θa) =

N∑
n=1

|Vo|∑
k=1

[
λ ynk log σnk + (1− λ) ynk log σnk

(pnk(θi)− pnk(θo)) +

M∑
m=1

ym
nk log ψnk

]
(13)

The derivatives of the above cost function with re-
spect to the final layer weight vectors wj are:

∇wjJ(θa) =

N∑
n=1

[
λ (ynj − σnj) + (1− λ)[pnj(θi)−

pnj(θo)−
∑

k

ynk σnj (pnk(θi)− pnk(θo))]
]

(14)

In a way, the regularizers in our loss functions
are inspired from the data selection methods of
Axelrod et al. (2011), where they use cross entropy
between the in- and the out-domain LMs to score
out-domain sentences. However, our approach is
quite different from them in several aspects. First
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and most importantly, we take the scoring inside
model training and use it to bias the training to-
wards the in-domain model. Both the scoring and
the training are performed at the bilingual n-gram
level rather than at the sentence level. Integrating
scoring inside the model allows us to learn a robust
model by training/tuning the relevant parameters,
while still using the complete data. Secondly, our
models are based on NNs, while theirs utilize the
traditional Markov-based generative models.

4.3 Technical Details

In this section, we describe some implementation
details of NDAM that we found to be crucial,
such as: using gradient clipping to handle vanish-
ing/exploding gradient problem in SGA training
with backpropagation, selecting appropriate noise
distribution in NCE, and special handling of out-
domain words that are unknown to the in-domain.

4.3.1 Gradient Clipping

Two common issues with training deep NNs on
large data-sets are the vanishing and the exploding
gradients problems (Pascanu et al., 2013). The er-
ror gradients propagated by the backpropagation
may sometimes become very small or very large
which can lead to undesired (nan) values in weight
matrices, causing the training to fail. We also ex-
perienced the same problem in our NDAM quite
often. One simple solution to this problem is to
truncate the gradients, known as gradient clipping
(Mikolov, 2012). In our experiments, we limit the
gradients to be in the range [−5; +5].

4.3.2 Noise Distribution in NCE

Training with NCE relies on sampling from a
noise distribution (i.e., ψ in Equation 5), and the
performance of the NDAM models varies consid-
erably with the choice of the distribution. We ex-
plored uniform and unigram noise distributions in
this work. With uniform distribution, every word
in the output vocabulary has the same probability
to be sampled as noise. The unigram noise dis-
tribution is a multinomial distribution over words
constructed by counting their occurrences in the
output (i.e., n-th word in the n-gram sequence).
In our experiments, unigram distribution delivered
much lower perplexity and better MT results com-
pared to the uniform one. Mnih and Teh (2012)
also reported similar findings on perplexity.

4.3.3 Handling of Unknown Words

In order to reduce the training time and to learn
better word representations, NNLMs are often
trained on most frequent vocabulary words only
and low frequency words are represented under a
class of unknown words, unk. This results in a
large number of n-gram sequences containing at
least one unk word and thereby, makes unk a
highly probable word in the model.4

Our NDAM models rely on scoring out-domain
sequences (of word Ids) using models that are
trained based on the in-domain vocabulary. To
score out-domain sequences using a model, we
need to generate the sequences using the same vo-
cabulary based on which the model was trained.
In doing so, the out-domain words that are un-
known to the in-domain data map to the same unk
class. As a result, out-domain sequences contain-
ing unks get higher probability although they are
distant from the in-domain data.

A solution to this problem is to have an in-
domain model that can differentiate between its
own unk class, resulted from the reduced in-
domain vocabulary, and actual unknown words
that come from the out-domain data. We intro-
duce a new class unko to represent the latter.
We train the in-domain model by adding a few
dummy sequences containing unko occurring on
both source and target sides. This enables the
model to learn unk and unko separately, where
unko is a less probable class according to the
model. Later, the n-gram sequences of the out-
domain data contain both unk and unko classes
depending on whether a word is unknown to only
pruned in-domain vocabulary (i.e., unk) or is un-
known to full in-domain vocabulary (i.e., unko).

5 Evaluation

In this section, we describe the experimental
setup (i.e., data, settings for NN models and MT
pipeline) and the results. First we evaluate our
models intrinsically by comparing the perplexities
on a held-out in-domain testset against the base-
line NNJM model. Then we carry out an extrinsic
evaluation by using the NNJM and NDAM models
as features in machine translation and compare the
BLEU scores. Initial developmental experiments
were done on the Arabic-to-English language pair.

4For our Arabic-English in-domain data, 30% of n-gram
sequences contain at least one unk word.
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We carried out further experiments on the English-
to-German pair to validate our models.

5.1 Data

We experimented with the data made publicly
available for the translation task of the Interna-
tional Workshop on Spoken Language Translation
(IWSLT) (Cettolo et al., 2014). We used TED
talks as our in-domain corpus. For Arabic-to-
English, we used the QCRI Educational Domain
(QED) – A bilingual collection of educational lec-
tures5 (Abdelali et al., 2014), the News, and the
multiUN (UN) (Eisele and Chen, 2010) as our
out-domain corpora. For English-to-German, we
used the News, the Europarl (EP), and the Com-
mon Crawl (CC) corpora made available for the
9th Workshop of Statistical Machine Translation.6

Table 1 shows the size of the data used.
Training NN models is expensive. We, there-

fore, randomly selected subsets of about 300K
sentences from the bigger domains (UN, CC and
EP) to train the NN models.7 The systems were
tuned on concatenation of the dev. and test2010
and evaluated on test2011-2013 datasets. The tun-
ing set was also used to measure the perplexities
of different models.

5.2 System Settings

NNJM & NDAM: The NNJM models were
trained using NPLM8 toolkit (Vaswani et al.,
2013) with the following settings. We used a tar-
get context of 5 words and an aligned source win-
dow of 9 words, forming a joint stream of 14-
grams for training. We restricted source and tar-
get side vocabularies to the 20K and 40K most
frequent words. The word vector size D and the
hidden layer size were set to 150 and 750, respec-
tively. Only one hidden layer is used to allow
faster decoding. Training was done by the stan-
dard stochastic gradient ascent with NCE using

5Guzmán et al. (2013) showed that the QED corpus is
similar to IWSLT and adding it improves translation quality.

6http://www.statmt.org/wmt14/translation-task.html
7Concatenating all the data results in a corpus of ap-

proximately 4.5 million sentences which requires roughly
18 days of wall-clock time (18 hours/epoch on a Linux
Ubuntu 12.04.5 LTS running on a 16 Core Intel Xeon E5-
2650 2.00Ghz and 64Gb RAM) to train NNJM models on
our machines. We ran one baseline experiment with all the
data and did not find it better than the system trained on ran-
domly selected subset of the data. In the interest of time, we
therefore reduced the NN training to a subset (800K and 1M
sentences for AR-EN and EN-DE respectively).

8http://nlg.isi.edu/software/nplm/

AR-EN EN-DE
Corpus Sent. Tok. Corpus Sent. Tok.

IWSLT 150k 2.8/3.0 IWSLT 177K 3.5/3.3
QED 150k 1.4/1.5 CC 2.3M 57/53
NEWS 203k 5.6/6.3 NEWS 200K 2.8/3.4
UN 3.7M 129/125 EP 1.8M 51/48

Table 1: Statistics of the Arabic-English and
English-German training corpora in terms of Sen-
tences and Tokens (Source/Target). Tokens are
represented in millions.

100 noise samples and a mini-batch size of 1000.
All models were trained for 25 epochs. We used
identical settings to train the NDAM models, ex-
cept for the special handling of unk tokens.

Machine Translation System: We trained a
Moses system (Koehn et al., 2007), with the
following settings: a maximum sentence length
of 80, Fast-Aligner for word-alignments (Dyer et
al., 2013), an interpolated Kneser-Ney smoothed
5-gram language model with KenLM (Heafield,
2011), lexicalized reordering model (Galley and
Manning, 2008), a 5-gram operation sequence
model (Durrani et al., 2015b) and other default pa-
rameters. We also used an NNJM trained with the
settings described above as an additional feature
in our baseline system. In adapted systems, we
replaced the NNJM model with the NDAM mod-
els. We used ATB segmentation using the Stanford
ATB segmenter (Green and DeNero, 2012) for
Arabic-to-English and the default tokenizer pro-
vided with the Moses toolkit (Koehn et al., 2007)
for the English-to-German pair. Arabic OOVs
were translated using an unsupervised transliter-
ation module in Moses (Durrani et al., 2014). We
used k-best batch MIRA (Cherry and Foster, 2012)
for tuning.

5.3 Intrinsic Evaluation

In this section, we compare the NNJM model and
our NDAM models in terms of their perplexity
numbers on the in-domain held-out dataset (i.e.,
dev+test2010). We choose Arabic-English lan-
guage pair for the development experiments and
train domain-wise models to measure the related-
ness of each domain with respect to the in-domain.
We later replicated selective experiments for the
English-German language pair.

The first part of Table 2 summarizes the results
for Arabic-English. The perplexity numbers in the
second column (NNJMb) show that NEWS is the
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Domain NNJMb NNJMcat NDAMv1 NDAMv2

Arabic-English

IWSLT 12.55 - - -
QED 61.34 11.72 11.14 11.15
NEWS 42.88 10.88 10.67 10.59
UN 111.11 11.25 10.83 10.74
ALL - 10.31 10.08 10.22

English-German

IWSLT 10.20 – – –
ALL - 6.71 6.21 6.37

Table 2: Comparing the perplexity of NNJM
and NDAM models. NNJMb represents the model
trained on each individual domain separately.

most related domain from the perspective of in-
domain data, whereas UN is the farthest having
the worst perplexity. The third column (NNJMcat)
shows results of the models trained from concate-
nating each domain to the in-domain data. The
perplexity numbers improved significantly in each
case showing that there is useful information avail-
able in each domain which can be utilized to im-
prove the baseline. It also shows the robustness of
neural network models. Unlike the n-gram model,
the NN-based model improves generalization with
the increase in data without completely skewing
towards the dominating part of the data.

Concatenating in-domain with the NEWS data
gave better perplexities than other domains. Best
results were obtained by concatenating all the
data together (See row ALL). The third and fourth
columns show results of our models (NDAMv∗).
Both give better perplexities than NNJMcat in all
cases. However, it is unclear which of the two
is better. Similar observations were made for the
English-to-German pair, where we only did exper-
iments on the concatenation of all domains.

5.4 Extrinsic Evaluation

Arabic-to-English: For most language pairs,
the conventional wisdom is to train the system
with all available data. However, previously re-
ported MT results on Arabic-to-English (Mansour
and Ney, 2013) show that this is not optimal and
the results are often worse than only using in-
domain data. The reason for this is that the UN
domain is found to be distant and overwhelmingly
large as compared to the in-domain IWSLT data.
We carried out domain-wise experiments and also
found this to be true.

We considered three baseline systems: (i) Bin,

SYS IWSLT QED NEWS UN ALL

Bin 26.1 - - - -
Bcat - 26.2 26.7 25.8 26.5
Bcat,in - 26.2 26.3 25.9 26.5

Table 3: Results of the baseline Arabic-to-English
MT systems. The numbers are averaged over
tst2011-2013.

which is trained on the in-domain data, (ii) Bcat,
which is trained on the concatenation of in- and
out-domain data, and (ii) Bcat,in, where the MT
pipeline was trained on the concatenation but the
NNJM model is trained only on the in-domain
data. Table 3 reports average BLEU scores across
three test sets on all domains. Adding QED and
NEWS domains gave improvements on top of the
in-domain IWSLT baseline. Concatenation of UN
with in-domain made the results worse. Concate-
nating all out-domain and in-domain data achieves
+0.4 BLEU gain on top of the baseline in-domain
system. We will use Bcat systems as our baseline
to compare our adapted systems with.

Table 4 shows results of the MT systems Sv1

and Sv2 using our adapted models NDAMv1 and
NDAMv2. We compare them to the baseline sys-
tem Bcat, which uses the non-adapted NNJMcat

as a feature. Sv1 achieved an improvement of up
to +0.4 and Sv2 achieved an improvement of up
to +0.5 BLEU points. However, Sv2 performs
slightly worse than Sv1 on individual domains.
We speculate this is because of the nature of the
NDAMv2, which gives high weight to out-domain
sequences that are liked by the in-domain model
and disliked by the out-domain model. In the case
of individual domains, NDAMv2 might be over pe-
nalizing out-domain since the out-domain model
is only built on that particular domain and always
prefers it more than the in-domain model. In case
of ALL, the out-domain model is more diverse and
has different level of likeness for each domain.

We analyzed the output of the baseline system
(Scat) and spotted several cases of lexical ambigu-
ity caused by out-domain data. For example, the
Arabic phrase PAJ
�J 	kCË YK@ 	QË @ ÉÒmÌ'@ can be trans-
lated to choice overload or unwanted pregnancy.
The latter translation is incorrect in the context of
in-domain. The bias created due to the out-domain
data caused Scat to choose the contextually incor-
rect translation unwanted pregnancy. However,
the adapted systems Sv∗ were able to translate it
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QED NEWS UN ALL
tst11 tst12 tst13 tst11 tst12 tst13 tst11 tst12 tst13 tst11 tst12 tst13

Bcat 25.0 27.3 26.2 25.4 27.6 27.1 24.7 27.0 25.8 25.0 27.5 27.0

Sv1 25.2 27.7 26.2 25.8 27.8 27.3 24.7 27.5 26.1 25.3 27.8 27.0
∆ +0.2 +0.4 0.0 +0.4 +0.2 +0.2 0.0 +0.5 +0.3 +0.3 +0.2 0.0

Sv2 25.1 27.6 26.2 25.6 27.9 27.2 24.6 27.2 26.1 25.5 27.9 26.9
∆ +0.1 +0.3 0.0 +0.2 +0.3 +0.1 -0.1 +0.2 +0.3 +0.5 +0.4 -0.1

Table 4: Arabic-to-English MT Results

SYS tst11 tst12 tst13 Avg

Baselines

Bin 25.0 22.5 23.2 23.6
Bcat 25.7 22.9 24.1 24.2
Bcat,in 26.0 22.4 23.6 24.0

Comparison against NDAM

Bcat 25.7 22.9 24.1 24.2

Sv1 26.3 23.1 24.5 24.6
∆ +0.6 +0.2 +0.4 +0.4

Sv2 26.2 23.0 24.6 24.6
∆ +0.5 +0.1 +0.5 +0.4

Table 5: English-to-German MT Results

correctly. In another example ? 	àYJ. Ë @ �é�̄ AJ
Ë 	á« @ 	XAÓ
(How about fitness?), the word �é�̄ AJ
Ë is translated
to proprietary by Scat, a translation frequently ob-
served in the out-domain data. Sv∗ translated it
correctly to fitness, as preferred by the in-domain.

English-to-German: Concatenating all training
data to train the MT pipeline has been shown to
give the best results for English-to-German (Birch
et al., 2014). Therefore, we did not do domain-
wise experiments, except for training a system on
the in-domain IWSLT data for the sake of com-
pleteness. We also tried Bcat,in variation, i.e.
training an MT system on the entire data and using
in-domain data to train the baseline NNJM. The
baseline system Bcat gave better results and was
used as our reference for comparison.

Table 5 shows the results of our systems, Sv1

and Sv2, compared to the baselines, Bin and Bcat.
Unlike Arabic-to-English, the baseline system Bin

is much worse than Bcat. Our adapted MT systems
Sv1 and Sv2 both outperformed the best baseline
system (Bcat) with an improvement of up to 0.6
points. Sv2 performed slightly better than Sv1 on
one occasion and slightly worse in others.

Comparison with Data Selection: We also
compared our results with the MML-based data

SYS tst11 tst12 tst13 Avg

Arabic-to-English

Bcat 25.0 27.5 27.0 26.5
Sv1 25.3 27.8 27.0 26.7
Bmml 25.5 27.8 26.8 26.7
Sv1+mml 25.5 28.2 27.2 27.0

English-to-German

Bcat 25.7 22.9 24.1 24.2
Sv1 26.3 23.1 24.5 24.6
Bmml 25.1 22.7 23.9 23.9
Sv1+mml 25.4 22.8 23.9 24.0

Table 6: Comparison with Modified Moore-Lewis

selection approach as shown in Table 6. The
MML-based baseline systems (Bmml) used 20%
selected data for training the MT system and the
NNJM. On Arabic-English, both MML-based se-
lection and our model (Sv1) gave similar gains on
top of the baseline system (Bcat). Further results
showed that both approaches are complementary.
We were able to obtain an average gain of +0.3
BLEU points by training an NDAMv1 model over
the selected data (see Sv1+mml).

However, on English-German, the MML-based
selection caused a drop in the performance (see
Table 6). Training an adapted NDAMv1 model
over selected data gave improvements over MML
in two test sets but could not restore the baseline
performance, probably because the useful data has
already been filtered by the selection process.

6 Conclusion
We presented two novel models for domain adap-
tation based on NNJM. Adaptation is performed
by regularizing the loss function towards the in-
domain model and away from the unrelated out-
of-domain data. Our models show better perplex-
ities than the non-adapted baseline NNJM mod-
els. When integrated into a machine translation
system, gains of up to 0.5 and 0.6 BLEU points
were obtained in Arabic-to-English and English-
to-German systems over strong baselines.

1267



References
Ahmed Abdelali, Francisco Guzman, Hassan Sajjad,

and Stephan Vogel. 2014. The AMARA corpus:
Building parallel language resources for the educa-
tional domain. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’14), Reykjavik, Iceland, May.

Michael Auli, Michel Galley, Chris Quirk, and Geof-
frey Zweig. 2013. Joint language and translation
modeling with recurrent neural networks. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, Seattle, Wash-
ington, USA, October.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao.
2011. Domain adaptation via pseudo in-domain data
selection. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’11, Edinburgh, United Kingdom.
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