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ABSTRACT
During natural or man-made disasters, humanitarian response or-
ganizations look for useful information to support their decision-
making processes. Social media platforms such as Twitter have
been considered as a vital source of useful information for disaster
response and management. Despite advances in natural language
processing techniques, processing short and informal Twitter mes-
sages is a challenging task. In this paper, we propose to use Deep
Neural Network (DNN) to address two types of information needs
of response organizations: (i) identifying informative tweets and
(ii) classifying them into topical classes. DNNs use distributed rep-
resentation of words and learn the representation as well as higher
level features automatically for the classification task. We propose
a new online algorithm based on stochastic gradient descent to train
DNNs in an online fashion during disaster situations. We test our
models using a crisis-related real-world Twitter dataset.

Keywords
deep learning, supervised classification, twitter, text classification,
crisis response

1. INTRODUCTION
Emergency events such as natural or man-made disasters bring

unique challenges for humanitarian response organizations. Partic-
ularly, sudden-onset crisis situations demand officials to make fast
decisions based on minimum information available to deploy rapid
crisis response. However, information scarcity during time-critical
situations hinders decision-making processes and delays response
efforts [4, 7].

During crises, people post updates regarding their statuses, ask
for help and other useful information, report infrastructure dam-
ages, injured people, etc., on social media platforms like Twit-
ter [26]. Humanitarian organizations can use this citizen-generated
information to provide relief if critical information is easily avail-
able in a timely fashion.1 In this paper, we consider the classifica-

1http://www.napsgfoundation.org/wp-content/uploads/2013/02/
NAPSG-Remote-Sensing-Webcast-022213.pdf
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tion of the social media posts into different humanitarian categories
to fulfill different information needs of humanitarian organizations.
Specifically, we address two types of information needs described
as follows:

Informativeness of social media posts: Information posted on so-
cial networks during crises vary greatly in value. Most messages
contain irrelevant information not useful for disaster response and
management. Humanitarian organizations do not want a deluge of
noisy messages that are of a personal nature or those that do not
contain any useful information. They want clean data that consists
of messages containing potentially useful information. They can
then use this information for various purposes such as situational
awareness. In order to assist humanitarian organizations, we per-
form binary classification. That is, we aim to classify each message
into one of the two classes i.e. “informative" vs. “not informative".

Information types of social media posts Furthermore, humanitar-
ian organizations are interested in sorting social media posts into
different categories. Identifying social media posts by category
assists humanitarian organizations in coordinating their response.
Categories such as infrastructure damage, reports of deceased or in-
jured, urgent need for shelter, food and water, or donations of goods
or services could therefore be directed to different relief functions.
In this work, we show how we can classify tweets into multiple
classes.

Automatic classification of short crisis-related messages such as
tweets is a challenging task due to a number of reasons. Tweets
are short (only 140 characters), informal, often contain abbrevia-
tions, spelling variations and mistakes, and, therefore, they are hard
to understand without enough context. Despite advances in natu-
ral language processing (NLP), interpreting the semantics of short
informal texts automatically remains a hard problem. Traditional
classification approaches rely on manually engineered features like
cue words and TF-IDF vectors for learning [7]. Due to the high
variability of the data during a crisis, adapting the model to changes
in features and their importance manually is undesirable (and often
infeasible).

To overcome these issues, we use Deep Neural Networks (DNNs)
to classify the tweets. DNNs are usually trained using online learn-
ing and have the flexibility to adaptively learn the model parameters
as new batches of labeled data arrive, without requiring to retrain
the model from scratch. DNNs use distributed condensed repre-
sentation of words and learn the representation as well as higher
level abstract features automatically for the classification task. Dis-
tributed representation (as opposed to sparse discrete representa-
tion) generalizes well. This can be a crucial advantage at the be-
ginning of a new disaster, when there is not enough event-specific
labeled data. We can train a reasonably good DNN model using
previously labeled data from other events, and then the model is
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Figure 1: Convolutional neural network on a sample tweet: “guys
if know any medical emergency around balaju area you can reach
umesh HTTP doctor at HTTP HTTP”.

fine-tuned adaptively as newly labeled data arrives in small batches.
In this paper, we use Deep Neural Network (DNN) to address

two types of information needs of response organizations: (i) iden-
tifying informative tweets and (ii) classifying them into topical classes.
DNNs use distributed representation of words and learn the rep-
resentation as well as higher level features automatically for the
classification task. We propose a new online algorithm based on
stochastic gradient descent to train DNNs in an online fashion dur-
ing disaster situations. Moreover, we make our source code pub-
licly available for crisis computing community for further research
at: https://github.com/CrisisNLP/deep-learning-for-big-crisis-data

In the next section, we provide details regarding DNNs we use
and the online learning algorithm. Section 3 describes datasets and
online learning settings. In Section 4, we describe results of our
models. Section 5 presents related-work and we conclude our paper
in Section 6.

2. DEEP NEURAL NETWORK
As argued before, deep neural networks (DNNs) can be quite

effective in classifying tweets during a disaster situation because
of their distributed representation of words and automatic feature
learning capabilities. Furthermore, DNNs are usually trained using
online algorithms, which nicely suits the needs of a crisis response
situation.

Our main hypothesis is that in order to effectively classify tweets,
which are short and informal, a classification model should learn
the key features at different levels of abstraction. To this end, we
use a Convolutional Neural Network (CNN), which has been shown
to be effective for sentence-level classification tasks [13].

2.1 Convolutional Neural Network
Figure 1 demonstrates how a CNN works with an example tweet.2

Each word in the vocabulary V is represented by a D dimensional
vector in a shared look-up table L ∈ R|V |×D . L is considered a
model parameter to be learned. We can initialize L randomly or
using pretrained word embedding vectors like word2vec [16].

Given an input tweet s = (w1, · · · , wT ), we first transform it
into a feature sequence by mapping each word token wt ∈ s to an

2The HTTP tag in the example represents URLs.

index inL. The look-up layer then creates an input vector xt ∈ RD
for each token wt, which are passed through a sequence of convo-
lution and pooling operations to learn high-level abstract features.

A convolution operation involves applying a filter u ∈ RL.D to
a window of L words to produce a new feature

ht = f(u.xt:t+L−1 + bt) (1)

where xt:t+L−1 denotes the concatenation of L input vectors, bt is
a bias term, and f is a nonlinear activation function (e.g., sig, tanh).
A filter is also known as a kernel or a feature detector. We apply this
filter to each possibleL-word window in the tweet to generate a fea-
ture map hi = [h1, · · · , hT+L−1]. We repeat this processN times
with N different filters to get N different feature maps. We use a
wide convolution [12] (as opposed to narrow), which ensures that
the filters reach the entire sentence, including the boundary words.
This is done by performing zero-padding, where out-of-range (i.e.,
t<1 or t>T ) vectors are assumed to be zero.

After the convolution, we apply a max-pooling operation to each
feature map.

m = [µp(h1), · · · , µp(hN )] (2)

where µp(hi) refers to the max operation applied to each window
of p features in the feature map hi. For instance, with p = 2, this
pooling gives the same number of features as in the feature map
(because of the zero-padding). Intuitively, the filters compose local
n-grams into higher-level representations in the feature maps, and
max-pooling reduces the output dimensionality while keeping the
most important aspects from each feature map.

Since each convolution-pooling operation is performed indepen-
dently, the features extracted become invariant in locations (i.e.,
where they occur in the tweet), thus acting like bag-of-n-grams.
However, keeping the order information could be important for
modeling sentences. In order to model interactions between the
features picked up by the filters and the pooling, we include a dense
layer of hidden nodes on top of the pooling layer

z = f(Vm+ bh) (3)

where V is the weight matrix, bh is a bias vector, and f is a non-
linear activation. The dense layer naturally deals with variable sen-
tence lengths by producing fixed size output vectors z, which are
fed to the output layer for classification.

Depending on the classification tasks, the output layer defines a
probability distribution. For binary classification tasks, it defines a
Bernoulli distribution:

p(y|s, θ) = Ber(y| sig(wTz+ b)) (4)

where sig refers to the sigmoid function, and w are the weights
from the dense layer to the output layer and b is a bias term. For
multi-class classification the output layer uses a softmax func-
tion. Formally, the probability of k-th label in the output for classi-
fication into K classes:

P (y = k|s, θ) = exp (wT
k z+ bk)∑K

j=1 exp (w
T
j z+ bj)

(5)

where, wk are the weights associated with class k in the output
layer. We fit the models by minimizing the cross-entropy between
the predicted distributions ŷnθ = p(yn|sn, θ) and the target distri-
butions yn (i.e., the gold labels).3 The objective function f(θ) can
3Other loss functions (e.g., hinge) yielded similar results.

https://github.com/CrisisNLP/deep-learning-for-big-crisis-data


Algorithm 1: Online learning of CNN
1. Initialize the model parameters θ0;
2. for a minibatch Bt = {s1 . . . sn} at time t do

a. Compute the loss f(θt) in Equation 6;
b. Compute gradients of the loss f ′(θt) using
backpropagation;
c. Update: θt+1 = θt − ηt 1

n
f ′(θt);

end

be written as:

f(θ) =

N∑
n=1

K∑
k=1

ynk log P (yn = k|sn, θ) (6)

where,N is the number of training examples and ynk = I(yn = k)
is an indicator variable to encode the gold labels, i.e., ytk = 1 if
the gold label yt = k, otherwise 0.

2.2 Online Learning
DNNs are usually trained with first-order online methods like

stochastic gradient descent (SGD). This method yields a crucial ad-
vantage in crisis situations, where retraining the whole model each
time a small batch of labeled data arrives is impractical. Algorithm
1 demonstrates how our CNN model can be trained in a purely on-
line setting. We first initialize the model parameters θ0 (line 1),
which can be a trained model from other disaster events or it can
be initialized randomly to start from scratch.

As a new batch of labeled tweets Bt = {s1 . . . sn} arrives, we
first compute the log-loss (cross entropy) in Equation 6 forBt with
respect to the current parameters θt (line 2a). Then, we use back-
propagation to compute the gradients f ′(θt) of the loss with respect
to the current parameters (line 2b). Finally, we update the param-
eters with the learning rate ηt and the mean of the gradients (line
2c). We take the mean of the gradients to deal with minibatches
of different sizes. Notice that we take only the current minibatch
into account to get an updated model. Choosing a proper learn-
ing rate ηt can be difficult in practice. Several adaptive methods
such as ADADELTA [27], ADAM [14], etc., have been proposed
to overcome this issue. In our model, we use ADADELTA.

2.3 Word Embedding and Fine-tuning
As mentioned before, we can initialize the word embeddings L

randomly, and learn them as part of model parameters by back-
propagating the errors to the look-up layer. Random initialization
may lead the training algorithm to get stuck in a local minima. One
can plug the readily available embeddings from external sources
(e.g., Google embeddings [16]) in the neural network model and
use them as features without further task-specific tuning. However,
the latter approach does not exploit the automatic feature learning
capability of DNN models, which is one of the main motivations
of using them. In our work, we use pre-trained word embeddings
(see below) to better initialize our models, and we fine-tune them
for our task, which turns out to be beneficial.

Mikolov et al. [16] propose two log-linear models for comput-
ing word embeddings from large (unlabeled) corpuses efficiently:
(i) a bag-of-words model CBOW that predicts the current word
based on the context words, and (ii) a skip-gram model that pre-
dicts surrounding words given the current word.4 They released
their pre-trained 300-dimensional word embeddings trained by the
skip-gram model on a Google news dataset.
4https://code.google.com/p/word2vec/

Since we work on disaster related tweets, which are quite dif-
ferent from news, we have trained domain-specific embeddings of
300-dimensions (vocabulary size 20 million) using the Skip-gram
model of word2vec tool [17] from a large corpus of disaster related
tweets. The corpus contains 57, 908 tweets and 9.4 million tokens.

3. DATASET AND EXPERIMENTAL
SETTINGS

In this section, we describe the datasets used for the classification
tasks and the settings for CNN and online learning.

3.1 Dataset and Preprocessing
We use CrisisNLP [9] labeled datasets. The CNN models were

trained online using a labeled dataset related to the 2015 Nepal
Earthquake5 and the rest of the datasets are used to train an initial
model (θ0 in Algorithm 1) upon which the online learning is per-
formed. The Nepal earthquake dataset consists of approximately
12k labeled tweets collected from Twitter during the event using
different keywords like NepalEarthquake. Of all the labeled tweets,
9k are labeled by trained volunteers6 during the actual event using
the AIDR platform [8] and the remaining 3k tweets are labeled us-
ing the Crowdflower7 crowdsourcing platform.

The dataset is labeled into different informative classes (e.g., af-
fected individuals, infrastructure damage, donations etc.) and one
“not-related” or “irrelevant” class. Table 1 provides a one line de-
scription of each class and also the total number of labels in each
class. Other useful information and Not related or irrelevant are
the most frequent classes in the dataset.

Data Preprocessing: We normalize all characters to their lower-
cased forms, truncate elongations to two characters, spell out ev-
ery digit to D, all twitter usernames to userID, and all URLs
to HTTP. We remove all punctuation marks except periods, semi-
colons, question and exclamation marks. We further tokenize the
tweets using the CMU TweetNLP tool [6].

3.2 Online Training Settings
Before performing the online learning, we assume that an initial

model θ0 exists. In our case, we train the initial model using all the
datasets from CrisisNLP except the Nepal earthquake. For online
training, we sort the Nepal labeled data based on the time stamp
of the tweets. This brings the tweets in their posting order. Next,
the dataset D is divided at each time interval dt in which case D is
defined as: D =

∑T
t=1 dt where dt = 200. For each time interval

t, we divide the available labeled dataset into a train set (70%),
dev set (10%), and a test set (20%) using ski-learn toolkit’s module
[19], which ensured that the class distribution remains reasonably
balanced in each subset.

Based on the data splitting strategy mentioned above, we start
online learning to train a binary and a multi-class classifier. For the
binary classifier training, we merge all the informative classes to
create one general Informative class. We train CNN models by op-
timizing the cross entropy in Equation 4 using the gradient-based
online learning algorithm ADADELTA [27].8 The learning rate
and the parameters were set to the values as suggested by the au-
thors. The maximum number of epochs was set to 25. To avoid
overfitting, we use dropout [23] of hidden units and early stop-

5https://en.wikipedia.org/wiki/April_2015_Nepal_earthquake
6These are trained volunteers from the Stand-By-Task-Force orga-
nization (http://blog.standbytaskforce.com/).
7crowdflower.com
8Other algorithms (SGD, Adagrad) gave similar results.

https://en.wikipedia.org/wiki/April_2015_Nepal_earthquake
crowdflower.com


Class Labels Description
Affected individuals 756 Reports of deaths, injuries, missing, found, or displaced people
Donations and volunteering 1021 Messages containing donations (food, shelter, services etc.) or volunteering offers
Infrastructure and utilities 351 Reports of infrastructure and utilities damage
Sympathy and support 983 Messages of sympathy-emotional support
Other useful information 1505 Messages containing useful information that does not fit in one of the above classes
Not related or irrelevant 6698 Irrelevant or not informative, or not useful for crisis response

Table 1: Description of the classes in the dataset. Column Labels shows the total number of labeled examples in each class

ping based on the accuracy on the validation set.9 We experi-
mented with {0.0, 0.2, 0.4, 0.5} dropout rates and {32, 64, 128}
minibatch sizes. We limit the vocabulary (V ) to the most frequent
P% (P ∈ {80, 85, 90}) words in the training corpus. The word
vectors in L were initialized with the pre-trained embeddings. We
use rectified linear units (ReLU) for the activation functions (f ),
{100, 150, 200} filters each having window size (L) of {2, 3, 4},
pooling length (p) of {2, 3, 4}, and {100, 150, 200} dense layer
units. All the hyperparameters are tuned on the development set.

4. RESULTS
In this section, we present our results for binary and multi-class

classification tasks.

4.1 Binary Classification
Figure 2 shows the results for the “informative" vs. “not infor-

mative" binary classification task using online learning. The perfor-
mance of the model is quite inconsistent as the size of the in-event
training data varies. We observe an improvement in performance
initially. However, the results dropped when the training size is be-
tween 2200 to 3900 tweets. We investigated this strange result and
found that this could be due to the inconsistencies in the annota-
tion procedure and the data sources. In our in-event (Nepal Earth-
quake) training data, first 3000 tweets are from CrowdFlower and
the rest are from AIDR. Tweets in CrowdFlower were annotated
by paid workers, where AIDR tweets are annotated by volunteers.
We speculate these inconsistencies can affect the performance at
the beginning, but as the model sees more AIDR data (4000+), the
performance stabilizes.

4.2 Multi-Class Classification
Figure 3 summarizes the results of online training for the multi-

class classification task. Since multi-class classification is a harder
task than binary classification, the first training run provides very
low accuracy and the results continue to drop until a good number
of training examples are available, which in this case is approx-
imately 2200 labeled tweets. As in the binary classification case,
after the initial dip in performance, once over 3000 tweets are avail-
able, the performance of the classifier improves and remains stable
after that.

The benefit of using online learning methods like CNN com-
pared to offline learning methods used in classifiers like SVM,
Naive Bayes, and Logistic Regression is online training. The la-
beled data comes in batches and retraining a model on the complete
data every time with the addition of newly labeled data is an expen-
sive task. Online training methods learn in small batches, which
suits the situation in hand perfectly.

Another advantage of neural network methods is automatic fea-
ture extraction that does not require any manual feature engineer-
ing. The models take labeled tweets as input and automatically

9l1 and l2 regularization on weights did not work well.
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Figure 2: Binary classification: Performance of the CNN model
with varying size of the training data

learn features based on distributed representation of words.

4.3 Discussion
Rapid analysis of social media posts during time-critical situa-

tions is important for humanitarian response organization to take
timely decisions and to launch relief efforts. This work proposes
solutions to two main challenges that humanitarian organizations
face while incorporating social media data into crisis response. First,
how to filter-out noisy and irrelevant messages from big crisis data
and second, categorization of the informative messages into differ-
ent classes of interest. By utilizing labeled data from past crises, we
show the performance of DNNs trained using the proposed online
learning algorithm for binary and multi-class classification tasks.

We observe that past labeled data helps when no event-specific
data is available in the early hours of a crisis. However, labeled
data from event always help improve the classification accuracy.

5. RELATED WORK
Recent studies have shown the usefulness of crisis-related data

on social media for disaster response and management [1, 22, 24].
A number of systems have been developed to classify, extract, and
summarize [21] crisis-relevant information from social media; for
a detailed survey see [7]. Cameron, et al., describe a platform
for emergency situation awareness [2]. They classify interesting
tweets using an SVM classifier. Verma, et al., use Naive Bayes and
MaxEnt classifiers to find situational awareness tweets from several
crises [25]. Imran, et al., implemented AIDR to classify a Twitter
data stream during crises [8]. They use a random forest classifier in
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Figure 3: Multi-class classification: Performance of the CNN
model with various sizes of training data.

an offline setting. After receiving every mini-batch of 50 training
examples, they replace the older model with a new one. In [10], the
authors show the performance of a number of non-neural network
classifiers trained on labeled data from past crisis events. However,
they do not use DNNs in their comparison.

DNNs and word embeddings have been applied successfully to
address NLP problems [5, 3, 18, 15, 11]. The emergence of tools
such as word2vec [17] and GloVe [20] have enabled NLP researchers
to learn word embeddings efficiently and use them to train better
models.

Collobert, et al. [5] presented a unified DNN architecture for
solving various NLP tasks including part-of-speech tagging, chunk-
ing, named entity recognition and semantic role labeling. They
showed that DNNs outperform traditional models in most of these
tasks. They also proposed a multi-task learning framework for
solving the tasks jointly.

Kim [13] and Kalchbrenner et al. [12] used convolutional neural
networks (CNN) for sentence-level classification tasks (e.g., sen-
timent/polarity classification, question classification) and showed
that CNNs outperform traditional methods (e.g., SVMs, MaxEnts).
Caragea, Silvescu, and Tapia used CNNs to identify informative
messages during disasters [3]. However, to the best of our knowl-
edge, no previous research has shown the efficacy of CNNs to both
the binary classification and the multi-class classification problems
using online learning.

6. CONCLUSIONS
We presented an online learning model namely Convolutional

Neural Network for the purpose of classifying tweets in a disaster
response scenario. We proposed a new online learning algorithm
for training CNNs in online fashion. We showed that online train-
ing of the model perfectly suits the disaster response situation. We
assume that a base model trained on past crisis labeled data exists
and the event-specific labeled data arrive in small batches which are
used to perform online learning. The neural network models bring
an additive advantage of automatic feature extraction which eases
the training process when compared with offline learning methods
like SVM, logistic regression. The model uses only labeled tweets
for training and automatically learns features from them. We re-

ported the results of two classification tasks (i.e. binary and multi-
class). Moreover, we also provide source code for the online learn-
ing of CNN models to research community for further extensions.
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