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Abstract

The role of social media, in particular microblogging plat-
forms such as Twitter, as a conduit for actionable and tactical
information during disasters is increasingly acknowledged.
However, time-critical analysis of big crisis data on social
media streams brings challenges to machine learning tech-
niques, especially the ones that use supervised learning. The
scarcity of labeled data, particularly in the early hours of a cri-
sis, delays the learning process. Existing classification meth-
ods require a significant amount of labeled data specific to
a particular event for training plus a lot of feature engineer-
ing to achieve best results. In this work, we introduce neural
network based classification methods for identifying useful
tweets during a crisis situation. At the onset of a disaster when
no labeled data is available, our proposed method makes the
best use of the out-of-event data and achieves good results.

Introduction
Time-critical analysis of social media data streams is impor-
tant for many application areas (Lee, Agrawal, and Choud-
hary 2013; Rudra et al. 2016). During the onset of a crisis sit-
uation, people use social media platforms to post situational
updates, look for useful information, and ask for help (Im-
ran et al. 2015). Rapid analysis of messages posted on mi-
croblogging platforms such as Twitter can help humanitarian
organizations gain situational awareness, learn about urgent
needs of affected people, critical infrastructure damage, and
medical emergencies (Nguyen et al. 2016).

Automatic identification of useful tweets is a challeng-
ing task because: (i) tweets are short – only 140 characters
– and therefore, hard to understand without enough con-
text; (ii) they often contain abbreviations, informal language,
spelling variations and are ambiguous; and, (iii) judging a
tweet’s utility is a subjective exercise. Despite advances in
natural language processing (NLP), interpreting short infor-
mal texts automatically remains a hard problem.

Supervised machine learning algorithms are dependent on
labeled data from the event for training. The performance of
models trained using data from previous events (out-of-event
data) is poor due to discrete word representations and the
variety across events from which the historical data was col-
lected. Second, training a classifier from scratch every time
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a disaster occurs is infeasible due to labeled data scarcity.
Third, traditional approaches require manually engineered
features like cue words and TF-IDF vectors (Imran et al.
2015) for learning. Moreover, manual adaptation of models
to changes in features and their importance is undesirable
(and often infeasible) because of the effort it takes to do so.

Deep neural networks (DNNs) are ideally suited for clas-
sifying a stream of crisis-related tweets. They are usually
trained with online methods and have the flexibility to learn
and adapt from new batches of labeled data without requir-
ing to retrain from scratch. Due to their distributed word rep-
resentation, they generalize well and make better use of the
previously labeled data from other events to speed up the
learning process in the beginning of a disaster. DNNs obvi-
ate the need of manually crafting features and automatically
learn latent features as distributed dense vectors, which have
shown to benefit various NLP tasks (Collobert et al. 2011).

In this paper, we use a convolutional neural network
(CNN) to classify tweets. CNNs capture the most salient
n-gram information by means of its convolution and max-
pooling operations.We present a series of experiments using
different variations of the training data – event data only,
out-of-event data only, and both. Experiments results show
that neural network models perform better than non-neural
models.They can be used reliably with the already available
out-of-event data. DNNs are better suited for classification
of crisis data than conventional classifiers because they can
learn features automatically and can be adopted to online
settings.

Convolutional Neural Network
Figure 1 shows our CNN model for classifying tweets into
useful vs. not useful for a crisis event. The architecture of
our model is similar to the one proposed in (Kim 2014).

For distributed representation of words, we first construct
a vocabulary V from the training set by selecting T most
frequent words. Each word in the vocabulary is then repre-
sented by aD dimensional vector in a shared look-up tableL
∈ R|V |×D, which is considered a model parameter to learn.
We can initialize L randomly or using pretrained word em-
bedding vectors like word2vec (Mikolov et al. 2013a).

Given an input tweet s = (w1, · · · , wT ), we first trans-
form it into a feature sequence by mapping each word token
wt ∈ s to an index in L. The look-up layer then creates an
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Figure 1: Convolutional neural network on a tweet: “guys
if know any medical emergency around balaju area you can
reach umesh HTTP doctor at HTTP”

input vector xt ∈ RD for each token wt, which are passed
through a sequence of convolution and pooling operations to
learn high-level feature representations.

A convolution operation involves applying a filter u ∈
RL.D (i.e., a vector of parameters) to a window of L words
to produce a new feature

ht = f(u.xt:t+L−1 + bt) (1)

where xt:t+L−1 denotes the concatenation of L input vec-
tors, bt is a bias term, and f is a nonlinear activation func-
tion (e.g., sig, tanh). We apply this filter to each possi-
ble L-word window in the tweet to generate a feature map
hi = [h1, · · · , hT+L−1]. We repeat this process N times
with N different filters to get N different feature maps.
We use a wide convolution (Kalchbrenner, Grefenstette, and
Blunsom 2014) (as opposed to narrow), which ensures that
the filters reach the entire sentence, including the boundary
words. This is done by performing zero-padding, where out-
of-range (i.e., t<1 or t>T ) vectors are assumed to be zero.

After the convolution, we apply a max-pooling operation
to each feature map

m = [µp(h
1), · · · , µp(hN )] (2)

where µp(hi) refers to the max operation applied to each
window of p features in the feature map hi. For instance,
with p = 2, this pooling gives the same number of fea-
tures as in the feature map (because of the zero-padding).
Intuitively, the filters compose local n-grams into higher-
level representations in the feature maps, and max-pooling
reduces the output dimensionality while keeping the most
important aspects from each feature map.

Since each convolution-pooling operation is performed
independently, the features extracted become invariant in
locations (i.e., where they occur in the tweet), thus acts
like bag-of-n-grams. However, keeping the order informa-
tion could be important for modeling sentences. In order to
model interactions between the features picked up by the

filters and the pooling, we include a dense layer of hidden
nodes on top of the pooling layer

z = f(Vm+ bh) (3)

where V is the weight matrix, bh is a bias vector, and f is
a non-linear activation. The dense layer naturally deals with
variable sentence lengths by producing fixed size output vec-
tors z, which are fed to the output layer for classification.
The output layer defines a Bernoulli distribution:

p(y|s, θ) = Ber(y| sig(wTz+ b)) (4)

where sig refers to the sigmoid function, and w are the
weights from the dense layer to the output layer and b is a
bias term. We fit the model by minimizing the cross-entropy
between the predicted distributions ŷnθ = p(yn|sn, θ) and
the target distributions yn (i.e., the gold labels).1

Word Embedding and Fine-tuning
We avoid manual engineering of features and use word em-
beddings instead as the only features. We use pre-trained
word embeddings to better initialize our models, and we
fine-tune them for our task which turns out to be beneficial.
We experimented with two types of pre-trained embeddings.
(i) Google Embedding: We use the pre-trained 300-
dimensional Google word embeddings released by Mikolov
et al. (2013a). These vectors were trained by their skip-gram
model on part of Google news dataset containing about 100
billion words with a vocabulary size of 3 millions words.2
(ii) Crisis Embedding: Since we work on disaster related
tweets, which are quite different from news, we have also
trained 300-dimensional domain-specific word embeddings
(vocabulary size of 20 millions) using the skip-gram model
of word2vec from a large corpus of disaster related tweets.
The corpus contains 57, 908 tweets and 9.4 million tokens.

Datasets and Experimental Settings
We use data from multiple sources: (1) CrisisNLP3 (Im-
ran, Mitra, and Castillo 2016), (2) CrisisLex (Olteanu et
al. 2014), and (3) AIDR (Imran et al. 2014). The first
two sources have tweets posted during several humanitarian
crises and labeled by paid workers. The AIDR data consists
of tweets from several crises events labeled by volunteers.
Table 1 shows statistics about the data.
Data Preprocessing: We normalize all characters to their
lower-cased forms and tokenize the tweets using the CMU
TweetNLP tool (Gimpel et al. 2011).
Data Settings: Given a particular event (e.g. Nepal earth-
quake), we use data from all other events plus All others (see
Table 1) as out-of-event data. We divide each event dataset
into train (70%), validation (10%) and test sets (20%) using
ski-learn toolkit’s module (Pedregosa et al. 2011) which en-
sured that the class distribution remains reasonably balanced
in each subset.

1Other loss functions (e.g., hinge) yielded similar results.
2https://code.google.com/p/word2vec/
3http://crisisnlp.qcri.org/



EVENT Nepal Earthquake Typhoon Hagupit California Earthquake Cyclone PAM All Others

Affected individual 756 204 227 235 4624
Donations and volunteering 1021 113 83 389 1752
Infrastructure and utilities 351 352 351 233 1972
Sympathy and support 983 290 83 164 4546
Other Useful Information 1505 732 1028 679 7709
Not related or irrelevant 6698 290 157 718 418

Grand Total 11314 1981 1929 2418 21021

Table 1: Class distribution of events under consideration and all other crises (i.e. data used as part of out-of-event data)

Feature Extraction: We extracted word-level unigrams, bi-
grams and trigrams from tweets. They are converted to TF-
IDF vectors by considering each tweet as a document. Note
that these features are used only in non-neural models. The
neural models take tweets and their labels as input. For the
SVM classifier, we implemented feature selection using a
Chi-Squared test to improve the estimator’s accuracy scores.

Models Settings
Settings for Non-Neural Models: We experimented with
(i) Support Vector Machine (SVM), a discriminative max-
margin model; (ii) Logistic Regression (LR), a discrimina-
tive probabilistic model; and (iii) Random Forest (RF), an
ensemble model of decision trees. We use the implementa-
tion from the scikit-learn toolkit (Pedregosa et al. 2011).
Settings for Convolutional Neural Network Models: Our
CNN model is implemented in Theano (Theano Develop-
ment Team 2016). We train CNN models by optimizing the
cross entropy using the gradient-based online learning algo-
rithm ADADELTA (Zeiler 2012).4 The learning rate and pa-
rameters were set to the values as suggested by the authors.
The maximum number of epochs was set to 25. To avoid
overfitting, we use dropout (Srivastava et al. 2014) of hidden
units and early stopping based on the accuracy on the valida-
tion set.5 We experimented with {0.0, 0.2, 0.4, 0.5} dropout
rates and {32, 64, 128} minibatch sizes. We limit the vocab-
ulary (V ) to the most frequentP% (P ∈ {80, 85, 90}) words
in the training corpus. The word vectors inLwere initialized
using two types of pre-trained word embeddings: (i) Crisis
embeddings (CNNI ) and (ii) Google embeddings (CNNII ).

We use rectified linear units (ReLU) for the activation
functions (f ), {100, 150, 200} filters each having window
size (L) of {2, 3, 4}, pooling length (p) of {2, 3, 4}, and
{100, 150, 200} dense layer units. All the hyperparameters
are tuned on the development set.

Results
For each event under consideration, we train classifiers on
the event data only, on the out-of-event data only, and on a
combination of both. We evaluate them on the binary classi-
fication task. We merge all informative classes (Table 1) to
create one general Useful or Relevant class.

Table 2 presents the results of binary classification com-
paring several non-neural classifiers with the CNN-based

4Other algorithms (SGD, Adagrad) gave similar results.
5l1 and l2 regularization on weights did not work well.

SYS RF LR SVM CNNI CNNII

Nepal Earthquake
Bevent 82.70 85.47 85.34 86.89 85.71
Bout 74.63 78.58 78.93 81.14 78.72
Bevent+out 81.92 82.68 83.62 84.82 84.91

California Earthquake
Bevent 75.64 79.57 78.95 81.21 78.82
Bout 56.12 50.37 50.83 62.08 68.82
Bevent+out 77.34 75.50 74.67 78.32 79.75

Typhoon Hagupit
Bevent 82.05 82.36 78.08 87.83 90.17
Bout 73.89 71.14 71.86 82.35 84.48
Bevent+out 78.37 75.90 77.64 85.84 87.71

Cyclone PAM
Bevent 90.26 90.64 90.82 94.17 93.11
Bout 80.24 79.22 80.83 85.62 87.48
Bevent+out 89.38 90.61 90.74 92.64 91.20

Table 2: The AUC scores of non-neural and neural network-
based classifiers. event, out and event+out represents the
three different settings of the training data – event only, out-
of-event only and a concatenation of both.

classifier. CNNs performed better than all non-neural clas-
sifiers for all events under consideration. The improvements
are substantial in the case of training with the out-of-event
data only. In this case, CNN outperformed SVM by a margin
of up to 11%. This result has a significant impact to a situa-
tion involving early hours of a crisis, where though a lot of
data pours in, but performing data labeling using experts or
volunteers to get a substantial amount of training data takes
a lot of time. Our result shows that the CNN model handles
this situation robustly by making use of the out-of-event data
and provides reasonable performance.

When trained using both the event and out-of-event data,
CNNs also performed better than the non-neural models.
Comparing different training settings, we saw a drop in per-
formance when compared to the event-only training. This
drop is because of the inherent variety in the crisis data. The
large size of the out-of-event data down-weights the benefits
of the event data, and skewed the probability distribution of
the training data towards the out-of-event data.

To summarize, the neural network based classifier out-
performed non-neural classifiers in all data settings. The per-
formance of the models trained on out-of-event data are (as



expected) lower than that in the other two training settings.
However, in case of the CNN models, the results are reason-
able to the extent that out-of-event data can be used to pre-
dict tweets informativeness when no event data is available.
Comparing CNNI with CNNII , we did not see any system
consistently better than the other. In the rest of our experi-
ments below, we only consider the CNNI trained on crisis
embeddings because on the average, the crisis embeddings
work slightly better than the rest of the alternatives.

Related Work
Studies have analyzed how big crisis data can be use-
ful during major disasters so as to gain insights into the
situation as it unfolds (Acar and Muraki 2011). A num-
ber of systems have been developed to classify, extract,
and summarize crisis-relevant information from social me-
dia; for a detailed survey see Imran, et al. (Imran et al.
2015). DNNs and word embeddings have been applied suc-
cessfully to address NLP problems (Collobert et al. 2011;
Caragea, Silvescu, and Tapia 2016). The emergence of tools
such as word2vec (Mikolov et al. 2013b) and GloVe (Pen-
nington, Socher, and Manning 2014) have enabled NLP re-
searchers to learn word embeddings efficiently and use them
to train better models. As opposed to previous works, we ad-
dress the cold-start problem and show how out-of-event data
can be used when there is not enough labeled training data
at the beginning of a disaster.

Conclusions
We addressed the problem of rapid classification of crisis-
related data posted on microblogging platforms like Twitter.
Specifically, we addressed the challenges using deep neural
network models the classification of crisis-related tweets and
showed that one can reliably use out-of-event data for the
classification of new event when no event-specific data is
available. The performance of the classifiers degraded from
event data when out-of-event training samples were added
to training samples. Thus, we recommend using out-of-event
training data during the first few hours of a disaster only after
which the training data related to the event should be used. In
the future, we will explore and perform experimentation to
determine even more robust domain adaptation techniques.
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