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Abstract

We present an unsupervised method to
find lexical variations in Roman Urdu
informal text. Our method includes a
phonetic algorithm UrduPhone, a feature-
based similarity function, and a clustering
algorithm Lex-C. UrduPhone encodes ro-
man Urdu strings to their phonetic equiv-
alent representations. This produces an
initial grouping of different spelling vari-
ations of a word. The similarity function
incorporates word features and their con-
text. Lex-C is a variant of k-medoids clus-
tering algorithm that group lexical varia-
tions. It incorporates a similarity thresh-
old to balance the number of clusters and
their maximum similarity. We test our sys-
tem on two datasets of SMS and blogs and
show an f-measure gain of up to 12% from
baseline systems.

1 Introduction

Urdu is the national language of Pakistan and one
of the official languages of India. It is written in
Perso-Arabic script. However in social media and
short text messages (SMS), a large proportion of
Urdu speakers use roman script (i.e., the English
alphabet) for writing, called Roman Urdu.

Roman Urdu lacks standard lexicon and usu-
ally many spelling variations exist for a given
word, e.g., the word zindagi [life] is also written as
zindagee, zindagy, zaindagee and zndagi. Specifi-
cally, the following normalization issues arise: (1)
differently spelled words (see example above), (2)
identically spelled words that are lexically differ-
ent (e.g., bahar can be used for both [outside]
and [spring], and (3) spellings that match words
in English (e.g, had [limit] for the English word
‘had’). These inconsistencies cause a problem of
data sparsity in basic natural language processing

tasks such as Urdu word segmentation (Durrani
and Hussain, 2010), part of speech tagging (Saj-
jad and Schmid, 2009), spell checking (Naseem
and Hussain, 2007), machine translation (Durrani
et al., 2010), etc.

In this paper, we propose an unsupervised
feature-based method that tackles above men-
tioned challenges in discovering lexical variations
in Roman Urdu. We exploit phonetic and string
similarity based features and incorporate contex-
tual features via top-k previous and next words’
features. For phonetic information, we develop an
encoding scheme for Roman Urdu, UrduPhone,
motivated from Soundex. Compared to other
available phonetic-based schemes that are mostly
limited to English sounds only, UrduPhone maps
Roman Urdu homophones effectively. Unlike pre-
vious work on short text normalization (see Sec-
tion 2), we do not have information about stan-
dard word forms in the dataset. The problem be-
comes more challenging as every word in the cor-
pus is a candidate of every other word. We present
a variant of the k-medoids clustering algorithm
that forms clusters in which every word has at
least a specified minimum similarity with the clus-
ter’s centroidal word. We conduct experiments on
two Roman Urdu datasets: an SMS dataset and
a blog dataset and evaluate performance using a
gold standard. Our method shows an f-measure
gain of up to 12% compared to baseline methods.
The dataset and code are made available to the re-
search community.

2 Previous Work

Normalization of short text messages and tweets
has been in focus (Sproat et al., 2001; Wei et al.,
2011; Clark and Araki, 2011; Roy et al., 2013;
Chrupala, 2014; Kaufmann and Kalita, 2010;
Sidarenka et al., 2013; Ling et al., 2013; Desai
and Narvekar, 2015; Pinto et al., 2012). However,
most of the work is limited to English or to other
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resource-rich languages. In this paper, we focus on
Roman Urdu, an under-resourced language, that
does not have any gold standard corpus with stan-
dard word forms. Therefore, we are restricted to
the task of finding lexical variations in informal
text. This is a rather more challenging problem
since in this case every word is a possible varia-
tion of every other word in the corpus.

Researchers have used phonetic, string, and
contextual knowledge to find lexical variations in
informal text.1 Pinto et al. (2012; Han et al.
(2012; Zhang et al. (2015) used phonetic-based
methods to find lexical variations. Han et al.
(2012) also used word similarity and word con-
text to enhance performance. Wang and Ng (2013)
used normalization operations e.g., missing word
recovery and punctuation correction to improve
normalization process. Irvine et al. (2012) used
manually prepared training data to build an au-
tomatic normalization system. Contractor et al.
(2010) used string edit distance to find candidate
lexical variations. Yang and Eisenstein (2013)
used an unsupervised approach with log linear
model and sequential Monte Carlo approximation.

We propose an unsupervised method to find lex-
ical variations. It uses string edit distance like
Contractor et al. (2010), Sound-based encoding
like Pinto et al. (2012) and context like Han et al.
(2012) combined in a discriminative framework.
However, in contrast, it does not use any corpus of
standard word forms to find lexical variations.

3 Our Method

The lexical variations of a lexical entry usually
have high phonetic, string-based, and contextual
similarity. We integrate a phonetic-based encod-
ing scheme, UrduPhone, a feature-based similarity
function, and a clustering algorithm, Lex-C.

3.1 UrduPhone

Several sound-based encoding schemes for words
have been proposed in literature such as Soundex
(Knuth, 1973; Hall and Dowling, 1980), NYSIIS
(Taft, 1970), Metaphone (Philips, 1990), Caver-
phone (Wang, 2009) and Double Metaphone.2

These schemes encode words based on their sound
1Spell correction is also considered as a variant of text

normalization (Damerau, 1964; Tahira, 2004; Fossati and
Di Eugenio, 2007). Here, we limit ourselves to the previous
work on short text normalization.

2http://en.wikipedia.org/wiki/
Metaphone

which in turn serves as grouping words of similar
sounds (lexical variations) to one code. However,
most of the schemes are designed for English and
European languages and are limited when apply to
other family of languages like Urdu.

In this work, we propose a phonetic encoding
scheme, UrduPhone, tailored for Roman Urdu.
The scheme is derived from the Soundex algo-
rithm. It groups consonants on the basis of com-
mon homophones in Urdu and English. It is differ-
ent from Soundex in two particular ways:3 Firstly,
UrduPhone generates encoding of length six com-
pared to length four in Soundex. This enables
UrduPhone to avoid mapping different forms of
a root word to same code. For example, musku-
rana [smiling] and mshuraht [smile] encode to
one form MSKR in Soundex but in UrduPhone,
they have different encoding which are MSKRN,
MSKRHT respectively. Secondly, we introduce
consonant groups which are mapped differently in
Soundex. We do this by analyzing Urdu alpha-
bets that map to a single roman form e.g. words
samar [reward], sabar [patience] and saib [apple],
all start with different Urdu alphabets that have
identical roman representation: s. In UrduPhone,
we map all such cases to a single form.4

3.2 Similarity Function

The similarity between two words wi and wj is
computed by the following similarity function:

S(wi, wj) =

∑F
f=1 α

(f) × σ(f)
ij∑F

f=1 α
(f)

Here, α(f) > 0 is the weight given to feature f ,
σ

(f)
ij ∈ [0, 1] is the similarity contribution made by

feature f , and F is the total number of features.
In the absence of additional information, and as
used in the experiments in this work, all weights
can be taken equal to one. The similarity function
returns a value in the interval [0, 1] with larger
values signifying higher similarity.

We use two types of features in our method:
word features and contextual features. Word fea-
tures can be based on phonetics and/or string sim-
ilarity. The phonetic similarity between words wi

and wj is 1 (i.e., σij = 1) if both words have the
same UrduPhone ID or encoding; otherwise, their

3Due to limited space, we limit the description of Urdu-
Phone to its comparison with Soundex.

4A complete table of UrduPhone mappings is provided in
the supplementary material.
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similarity is zero. The string similarity between
words wi and wj is defined as follows:

σij =
lcs(wi, wj)

min[len(wi), len(wj)]× edist(wi, wj)

Here, lcs(wi, wj) is the length of the longest com-
mon subsequence in words wi and wj and len(wi)
is the length of word wi. edist(wi, wj) returns the
edit distance between words except when the edit
distance is 0, in which case it returns 1.

Contextual features include top-k frequently oc-
curring previous and next words’ features. Let
ai

1, a
i
2, . . . , a

i
5 and aj

1, a
j
2, . . . , a

j
5 be the word IDs

for the top-5 frequently occurring words preceding
word wi and wj , respectively. Then, the similarity
between words is given by (Hassan et al., 2009)

σij =
∑5

k=1 ρk∑5
k=1 k

Here, ρk is zero if ai
k does not have a match in

aj
∗ (i.e., in the context of word wj); otherwise,
ρk = 5 − max[k, l] − 1 where ai

k = aj
l and l is

the highest rank (smallest integer) at which a pre-
vious match had not occurred. Instead of word IDs
in ai’s, UrduPhone IDs or string similarity based
cluster IDs can be used to reduce sparsity and im-
prove matches among similar words.

3.3 Lex-C: Clustering Algorithm

We develop a new clustering algorithm, called
Lex-C, for discovering lexical variations in infor-
mal text. This algorithm is a modified version of
the k-medoids algorithm (Han, 2005). It incorpo-
rates an assignment similarity threshold, t > 0, for
controlling the number of clusters and their simi-
larity. In particular, it ensures that all words in
a cluster have a similarity greater than or equal
to this threshold. It is important to note that the
poular k-means algorithm is known to be effective
for numeric datasets only which is not true in our
case, and it cannot utilize our specialized similar-
ity function for lexical variation discovery.

Specifically, Lex-C starts from an initial clus-
tering based on UrduPhone or string similarity.
It finds the centroidal word, wk

c , for cluster k as
the word with which the sum of similarities of all
other words in the cluster is a maximum. Then,
each non-centroidal word is assigned to the clus-
ter k if S(wi, w

k
c ) is a maximum among all clusters

and S(wi,W
k
c ) ≥ t. If the latter condition is not

satisfied (i.e., S(wi, w
k
c ) < t) then instead of as-

signing wordwi to cluster k, it starts a new cluster.
These two steps are repeated until convergence.

4 Experimental Evaluation

We empirically evaluate UrduPhone and our com-
plete method involving Lex-C separately on two
real-world datasets. Performance is reported with
B-Cubed precision, recall, and f-measure (Bagga
and Baldwin, 1998; Hassan et al., 2015) on a gold
standard dataset. These performance measures are
based on element-wise comparisons between pre-
dicted and actual clusters that are then aggregated
over all elements in the clustering. This avoided
the issue of 100% precision with low recall (all
words belong to separate clusters) and 100% re-
call with low precision (all words belong to one
cluster).

4.1 Dataset and Gold Standard

The first dataset, Web dataset, is scraped from Ro-
man Urdu websites on news5, poetry6, SMS7 and
blog8. The second dataset, SMS dataset, is ob-
tained from chopaal, an internet based group SMS
service9. For evaluation, we use a manually an-
notated database of Roman Urdu variations (Khan
and Karim, 2012). Table 1 shows statistics of the
datasets in comparison with the gold standard.

Dataset Web SMS

Unique words 22,044 28,908
Overlap with Gold Standard 12,600 13,087
UrduPhone IDs 3,952 3,599

Table 1: Datasets and gold standard statistics.
Overlap with gold standard = number of words ap-
pearing in gold standard; UrduPhone IDs = num-
ber of distinct UrduPhone encodings.

4.2 UrduPhone Evaluation

We compare UrduPhone with Soundex and its
variants.10 These algorithms are used to group
words based on their encoding and then evalu-
ated against the gold standard. Table 2 shows

5http://www.shashca.com,http://stepforwardpak.com/
6https://hadi763.wordpress.com/
7http://www.replysms.com/
8http://roman.urdu.co/
9http://chopaal.org

10We use NLTK-Trainer’s phonetic library http://
bit.ly/1OJGL9Q
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the results on Web dataset. UrduPhone out-
performs Soundex, Caverphone, and Metaphone
while Nysiis’s f-measure is comparable to that of
UrduPhone. We observe that Nysiis produces a
large number of single word clusters (out of 6,943
clusters produced 5,159 have only one word). This
gives high precision but recall is low. UrduPhone
produces fewer clusters (and fewer one word clus-
ters) with high recall.

Algorithm Pre Rec Fme

Soundex 0.30 0.97 0.46
Metaphone 0.49 0.80 0.64
Caverphone 0.31 0.92 0.46
Nysiis 0.63 0.69 0.66
UrduPhone 0.51 0.94 0.67

Table 2: Comparison of UrduPhone with other al-
gorithms on Web dataset

4.3 Lex-C Evaluation

We compared Lex-C with k-means and EM clus-
tering algorithms. With both of these algorithms
we used the same feature set (i.e., word features,
phonetic features, and contextual features), How-
ever, their performance lagged the performance of
our approach. The primary reason for this is that
our feature space is not continuous while k-means
and EM algorithms work best for continuous fea-
ture spaces.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Experiments

P
re

c
is

io
n

, 
R

e
c

a
ll

 &
 F

−
M

e
a

s
u

re

 

 

−3000

−2000

−1000

0

1000

P
re

d
ic

te
d

 −
 A

c
tu

a
l 

C
lu

s
te

rs

Precision

Recall

FMeasure

Cluster Difference

Figure 1: Performance results for Web dataset

4.4 Performance of our Method

We conduct extensive experiments to evaluate the
performance of our method. We vary initial clus-
terings (UrduPhone encoding or string similarity
based clustering); evaluate various combinations
of phonetic, string, and contextual features; and
consider different previous/next top-5 words’ fea-
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Figure 2: Performance results for SMS dataset

ID Initial Word Context-1 Context-2

1 – UPhone – –
2 – String – –

3 String String Word ID –
4 String String Cluster ID –
5 String UPhone Cluster ID –
6 UPhone UPhone Cluster ID –
7 UPhone UPhone Word ID –
8 UPhone UPhone UPhone ID Word ID
9 UPhone UPhone UPhone ID Cluster ID

Table 3: Details of experiments’ settings where
Initial is initial clustering based on String or Urdu-
Phone (UPhone)

tures (word ID, cluster ID, and/or UrduPhone ID).
Table 3 gives details of each experiment setting.

Figures 1 and 2 show results of selected ex-
periments for Web and SMS datasets respectively.
The x-axis shows the experiment (Exp.) IDs while
the left y-axis gives the precision, recall, and f-
measure and the right y-axis shows the difference
between the number of predicted and actual clus-
ters. Exp. 1 and 2 are baselines corresponding
to UrduPhone encoding (UPhone ID) and string
similarity based word clustering (Cluster ID) re-
spectively. The remaining experiments have dif-
ferent initial clustering, word features, and up to
two contextual features. In these results, the simi-
larity threshold t is selected such that the number
of discovered clusters is as close as possible to the
number of actual clusters in the gold standard for
each dataset. This is done to make the results com-
parable across different settings.

Compared to baselines, our method shows a
gain of up to 12% and 8% in Web and SMS
datasets respectively. The best performances are
obtained when UrduPhone is used as a feature
and UrduPhone IDs are used to define the context
(Exp. 8 and 9). In particular, when both Urdu-
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Phone IDs and word IDs/cluster IDs are used for
contextual information (i.e, with two sets of top-5
previous and next words’ features) the f-measure
is consistently high.

We analyzed the performance of Exp. 8 (best
settings for Web dataset) with varying t and
showed it in Figure 3. It is observed that the value
of t controls the number of clusters smoothly, and
precision increases with the number of clusters
and f-measure reaches a peak when number of
clusters is close to that in the gold standard.
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Figure 3: Effect of varying threshold t on Web
dataset (experiment 8)

5 Conclusion
We proposed an unsupervised method for finding
lexical variations in Roman Urdu. We presented a
phonetic encoding scheme UrduPhone for Roman
Urdu, and developed a feature-based clustering al-
gorithm Lex-C. Our experiments are evaluated on
a manually developed gold standard. The results
confirmed that our method outperforms baseline
methods. We made the datasets and algorithm
code available to the research community.
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