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Abstract

Roman Urdu is an informal form of the Urdu language written in Roman script, which
is widely used in South Asia for online textual content. It lacks standard spelling and
hence poses several normalization challenges during automatic language processing. In
this article, we present a feature-based clustering framework for the lexical normalization
of Roman Urdu corpora, which includes a phonetic algorithm UrduPhone, a string match-
ing component, a feature-based similarity function, and a clustering algorithm Lex-Var.
UrduPhone encodes Roman Urdu strings to their pronunciation-based representations.
The string matching component handles character-level variations that occur when writ-
ing Urdu using Roman script. The similarity function incorporates various phonetic-based,
string-based, and contextual features of words. The Lex-Var algorithm is a variant of the
k-medoids clustering algorithm that groups lexical variations of words. It contains a sim-
ilarity threshold to balance the number of clusters and their maximum similarity. The
framework allows feature learning and optimization in addition to the use of pre-defined
features and weights. We evaluate our framework extensively on four real-world datasets
and show an F-measure gain of up to 15 percent from baseline methods. We also demon-
strate the superiority of UrduPhone and Lex-Var in comparison to respective alternate
algorithms in our clustering framework for the lexical normalization of Roman Urdu.
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1 Introduction

Urdu, the national language of Pakistan, and Hindi, the national language of India,

jointly rank as the fourth most widely spoken language in the world (Lewis, 2009).

Urdu and Hindi are closely related in morphology and phonology, but use different

scripts: Urdu is written in Perso-Arabic script and Hindi is written in Devanagari

script. Interestingly, for social media and short messaging service (SMS) texts, a

large number of Urdu and Hindi speakers use an informal form of these languages

written in Roman script, Roman Urdu.

Since Roman Urdu does not have standardized spellings and is mostly used in

informal communication, there exist many spelling variations for a word. For ex-

ample, the Urdu word úÃY
	
K 	P [life] is written as zindagi, zindagee, zindagy, zaindagee

and zndagi. The lack of standard spellings inflates the vocabulary of the language

and causes sparsity problems. This results in poor performance of natural language

processing (NLP) and text mining tasks, such as word segmentation (Durrani and

Hussain, 2010), part of speech tagging (Sajjad and Schmid, 2009), spell checking

(Naseem and Hussain, 2007), machine translation (Durrani et al., 2010), and senti-

ment analysis (Paltoglou and Thelwall, 2012). For example, neural machine trans-

lation models are generally trained on a limited vocabulary. Non-standard spellings

would result in a large number of words unknown to the model, which would result

in poor translation quality.

Our goal is to perform lexical normalization, which maps all spelling variations of

a word to a unique form that corresponds to a single lexical entry. This reduces data

sparseness and improves the performance of NLP and text mining applications.

One challenge of Roman Urdu normalization is lexical variations, which emerge

through a variety of reasons such as informal writing, inconsistent phonetic map-

ping, and non-unified transliteration. Compared to the lexical normalization of

languages with a similar script like English, the problem is more complex than

writing a language informally in the original script. For example, in English, the

word thanks can be written colloquially as thanx or thx, where the shortening of

words and sounds into fewer characters is done in the same script. During Urdu to

Roman Urdu conversion, two processes happen at the same time. (1) Various Urdu

characters phonetically map to one or more Latin characters. (2) The Perso-Arabic

script is transliterated to Roman script. Since transliteration is a non-deterministic

process, it also introduces spelling variations. Fig. 1 shows an example of an Urdu

word ÿ» �QË [boys] that can be transliterated into Roman Urdu in three different ways

(larke, ladkay, or larkae) depending on the user’s preference. Lexical normalization

of Roman Urdu aims to map transliteration variations of a word to one standard

form.

Another challenge is that Roman Urdu lacks a standard lexicon or labeled cor-

pus for text normalization to use. Lexical normalization has been addressed for

standardized or resource-rich languages like English, e.g., (Jin, 2015; Han et al.,

2013; Gouws et al., 2011). For such languages, the correct or the standard spelling

of words is known, given the standard existence of the lexicon. Therefore, lexi-

cal normalization typically involves finding the best lexical entry for a given word
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Fig. 1. The lexicon can be varied due to informal writing, non-unified definition of

transliteration, phonetic mapping etc.

that does not exist in the standard lexicon. Thus, the proposed approaches aim to

find the best set of standard words for a given non-standard word. On the other

hand, Roman Urdu is an under-resourced language that does not have a standard

lexicon. Therefore, it is not possible to distinguish between an in-lexicon and an

out-of-lexicon word, and each word can potentially be a lexical variation of another.

Lexical normalization of such languages is computationally more challenging than

that of resource-rich languages.

Since we do not have a standard lexicon or labeled corpus for Roman Urdu lexical

normalization, we cannot apply a supervised method. Therefore, we introduce an

unsupervised clustering framework to capture lexical variations of words. In con-

trast to the English text normalization by Rangarajan Sridhar (2015); Sproat and

Jaitly (2017), our approach does not require prior knowledge on the number of

lexical groups or group labels (standard spellings). Our method significantly out-

performs the state-of-the-art Roman Urdu lexical normalization using rule-based

transliteration (Ahmed, 2009).

In this work, we give a detailed presentation of our framework (Rafae et al., 2015)

with additional evaluation datasets, extended experimental evaluation, and analysis

of errors. We develop an unsupervised feature-based clustering algorithm, Lex-Var,

that discovers groups of words that are lexical variations of one another. Lex-Var

ensures that each word has at least a specified minimum similarity with the clus-

ter’s centroidal word. Our proposed framework incorporates phonetic, string, and

contextual features of words in a similarity function that quantifies the relatedness

among words. We develop knowledge-based and machine-learned features for this

purpose. The knowledge-based features include UrduPhone for phonetic encoding,

an edit distance variant for string similarity, and a sequence-based matching al-

gorithm for contextual similarity. We also evaluate various learning strategies for

string and contextual similarities such as weighted edit distance and word em-

beddings. For phonetic information, we develop UrduPhone, an encoding scheme

for Roman Urdu derived from Soundex. Compared to other available techniques

that are limited to English sounds, UrduPhone is tailored for Roman Urdu pro-

nunciations. For string-based similarity features, we define a function based on

a combination of the longest common subsequence and edit distance metric. For

contextual information, we consider top-k frequently occurring previous and next

words or word groups. Finally, we evaluate our framework extensively on four Ro-

man Urdu datasets: two group-chat SMS datasets, one Web blog dataset, and one

service-feedback SMS dataset and measure performance against a manually devel-
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oped database of Roman Urdu variations. Our framework gives an F-measure gain

of up to 15% as compared to baseline methods.

We make the following key contributions in this paper:

• We present a general framework for normalizing words in an under-resourced

language that allows user-defined and machine-learned features for phonetic,

string, and contextual similarity.

• We propose two different clustering frameworks including a k-medoids based

clustering (Lex-Var) and an agglomerative clustering (Hierarchical Lex-Var)

• We present the first detailed study of Roman Urdu normalization.

• We introduce UrduPhone for the phonetic encoding of Roman Urdu words.

• We perform an error analysis of the results, highlighting the challenges of

normalizing an under-resourced and non-standard language.

• We have provided the source code for our lexical normalization framework.1

The remainder of this article is organized as follows. In Section 2, we present our

problem statement for the lexical normalization of an under-resourced language. In

Section 3, we describe our clustering framework for the lexical normalization of an

under-resourced language, including UrduPhone and Lex-Var. In Section 4, we de-

scribe the evaluation criterion for the lexical normalization of Roman Urdu, describe

the research experiments, and present the results and the error analysis. Section 5

discusses the related work in the lexical normalization of informal language, and

Section 6 concludes the paper.

2 Task Definition

Roman Urdu is a transliterated form of the Urdu language written in Roman script.

It does not have a standardized lexicon. That is, there is no standard spelling for

words. Therefore, each word observed in a corpus can potentially be a variant

of one or more of the other words appearing in the corpus. The goal of lexical

normalization is to identify all spelling variations of a word in a given corpus.

This challenging task involves normalizations associated with the following three

issues: (1) different spellings for a given word (e.g., kaun and kon for the word

[who]); (2) identically spelled words that are lexically different (e.g., bahar can be

used for both [outside] and [spring]); and (3) spellings that match words in English

(e.g., had [limit] for the English word had). The last issue arises because of code-

switching between Roman Urdu and English, which is a common phenomenon in

informal Urdu writing. People often write English phrases and sentences in Urdu

conversations or switch language mid-sentence, e.g., Hi everyone. Kese ha aap log?

[Hi everyone. How are you people?]. In our work, we focus on finding common

spelling variations of words (issue (1)), as this is the predominant issue in the

lexical normalization of Roman Urdu and do not address issues (2) or (3) explicitly.

Regarding issue (1), we note that while Urdu speakers generally transliterate

1 https://github.com/abdulrafae/normalization

https://github.com/abdulrafae/normalization
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Urdu script into Roman script, they also will often move away from the transliter-

ation in favor of a phonetically closer alternative. A commonly observed example

is the replacement of one or more vowels with another set of the vowels that has a

similar pronunciation (e.g., janeaey [to know] can also be written as janeey). Here,

the final characters ’aey’ and ’ey’ give the same pronunciation. Another variation

of the previous word is janiey. Now the character ’i’ is replacing the character ’e’.

In some cases, users will omit a vowel if it does not impact pronunciation, e.g.,

mehnga [expensive] becomes mhnga and similarly bohut [very] becomes bht. An-

other common example of this type of omission occurs with nasalized vowels. For

example, the Roman Urdu word kuton [dogs] is the transliteration of the Urdu word

àñ
�
J» . But often, the final nasalized Urdu character à is omitted during conversion,

and the Roman Urdu word becomes [kuto]. A similar case is found for words like

larko [boys], daikho [see], nahi [no] with final ’n’ omitted. We incorporate some

of these characteristics in our encoding scheme UrduPhone (See Section 3.3.1 and

Table 2 for more details on UrduPhone, its rules, and for complete steps to generate

encoding).

We define the identification of lexical variations in an under-resourced language

like Roman Urdu as follows: Given words wi (i = 1, . . . , N) in a corpus, find the

lexical groups `j (j = 1, . . . ,K) to which they belong. Each lexical group can contain

one or more words corresponding to a single lexical entry and may represent different

spelling variations of that entry in the corpus. In general, for a given corpus, the

number of lexical groups K is not known since no standardized lexicon is available.

Therefore, we estimate it using normalization.

Clustering is expensive in the specific case of Roman Urdu normalization. Consid-

ering an efficient algorithm like k-means clustering, the computational complexity

of lexical normalization is O(NKT ), where T is the number of iterations required

for clustering. By comparison, for languages like English with standardized lexi-

cons, each out-of-vocabulary (OOV or not in the dictionary) word can be a variant

of one or more in-vocabulary (IV) words. The computational complexity of lexical

normalization in English (given by O(K(N −K)) where K and (N −K) are the

numbers of IV and OOV words, respectively) is computationally less expensive than

the lexical normalization of Roman Urdu.

3 Method

In this section, we describe different components of our clustering framework. Sec-

tion 3.1 formalizes our clustering framework including the algorithm developed.

Section 3.2 defines a similarity function used in our clustering algorithm. In Section

3.3 we describe the features used in our system.

3.1 Clustering Framework: Lex-Var

We develop a new clustering algorithm, Lex-Var, for discovering lexical variations

in informal texts. This algorithm is a modified version of the k-medoids algorithm
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Algorithm 1: Lex-Var
Input: L∗ = {`∗1 , `

∗
2 , . . . , `

∗
K∗} (initial clusters; see Table 4), W = {w1, w2, . . . , wN} (words), t

(similarity threshold)
Output: L = {`1, `2, . . . , `K} (predicted clusters)

1 L = L∗;
2 repeat

/* Find cluster centroidal word */
3 C = ∅;
4 for ∀ `i ∈ L do
5 R = ∅;
6 for ∀ wj ∈ `i do
7 rj = 0;
8 for ∀ wk ∈ `i do
9 rj = rj + S(wj , wk);

10 end
11 R = R∪ {rj} ;

12 end
13 m = argmaxj(rj ∈ R);
14 ci = wm;
15 C = C ∪ {ci};
16 `i = ∅;
17 end

/* Assign word to clusters */
18 for ∀ wi ∈ W do
19 closest = null;
20 maxSim = 0;
21 for ∀ cj ∈ C do
22 if S(wi, cj) > t and S(wi, cj) > maxSim then
23 maxSim = S(wi, cj);
24 closest = cj ;

25 end

26 end
27 if closest ! = null then // Move word wi to cluster `j
28 `j = `j ∪ {wi} | closest ∈ `j ;
29 else // Move word wi to new cluster `|L|+1

30 `|L|+1 = {wi};
31 L = L ∪ {`|L|+1};
32 end

33 end

34 until stop condition Satisfied;

(Han, 2005) and incorporates an assignment similarity threshold, t > 0, for con-

trolling the number of clusters and their similarity spread. In particular, it ensures

that all words in a group have a similarity greater than or equal to some threshold,

t. It is important to note that the k-means algorithm cannot be used here because

it requires that the means of numeric features describe the clustered objects. The

standard k-medoids algorithm, on the other hand, uses the most centrally located

object as a cluster’s representative.

Algorithm 1 gives the pseudo-code for Lex-Var. Lex-Var takes as input words

(W) and outputs lexical groups (L) for these words. UrduPhone segmentation of

the words gives the initial clusters. Lex-Var iterates over two steps until it achieves

convergence. The first step finds the centroidal word ci for cluster `i as the word

for which the sum of similarities of all other words in the cluster is maximal. In

the second step, each non-centroidal word wi is assigned to cluster `j if S(wi, cj)

(see Section 3.2) is maximal among all clusters and S(wi, cj) > t. If the latter

condition is not satisfied (i.e., S(wi, cj) ≤ t), then instead of assigning word wi to

cluster `j , it starts a new cluster. We repeat these two steps until a stop condition is

satisfied (e.g., a fraction of words that change groups becomes less than a specified
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Fig. 2. Flow Diagram for Lex-Var

threshold). The computational complexity of Lex-Var is O((n2 +N)KT ), where n

is the maximum number of words in a cluster, which is typically less than N .

Fig. 2 shows the details of our clustering framework. The first row of boxes

shows the workflow of the system, and the area in the dotted square includes the

modules used in our clustering method. The filled arrows indicate the outputs of

the algorithms, and the unfilled arrows show modules that apply sub-modules.

After pre-processing the text, we normalize each word in the vocabulary. First,

we initialize the clustering using random clustering or UrduPhone clusters. Then,

based on the initial clusters, we apply (Hierarchical) Lex-Var algorithm to predict

clusters. Finally, we compute the F- Measure based on the gold standard clusters

to evaluate our prediction.

The Lex-Var algorithm applies a modified version of the k-medoids clustering,

which uses a similarity measure that further consists of different features, including

UrduPhone, String Learning, and Contextual feature. The edit distance is a sub-

module of the string learning. We learn the substitution cost with various methods

such as EM.

3.2 Similarity Measure

We compute the similarity between two words wi and wj using the following simi-

larity function:

S(wi, wj) =

∑F
f=1 α

(f) × σ(f)
ij∑F

f=1 α
(f)

(1)

Here, σ
(f)
ij ∈ [0, 1] is the similarity contribution made by feature f . F is the total

number of features. We will describe each feature in Section 3.3 in detail. α(f) > 0

is the weight of feature f . These weights are set to one by default and are automat-
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Table 1. UrduPhone vs Soundex Encodings

Word Soundex Encoding UrduPhone Encoding

mustaqbil [future] M 2 3 2 M 1 2 7 9 17

mustaqil [constant] M 2 3 2 M 1 2 7 17 0

khirki [window] K 6 2 0 K 19 14 7 0 0

kursi [chair] K 6 2 0 K 14 1 0 0 0

ronak [brightness] R 5 2 0 R 11 7 0 0 0

rung [color] R 5 2 0 R 11 13 0 0 0

dimaagh [brain] D 5 2 0 D 12 13 19 0 0

dimaag [brain] D 5 2 0 D 12 13 0 0 0

please P 4 2 0 P 17 1 0 0 0

plx P 4 2 0 P 17 3 0 0 0

Algorithm 2: UrduPhone
Input: w = {w1, · · · , wn}, a word of length n
Output: e = {e1, · · · , e6}, an encoding of length 6

1 e[0] = uppercase(w[0]);
2 j = 1;
3 for i = 1→ n do

// Discard duplicates
4 if i+ 1 ≤ n && w[i] == w[i+ 1] then
5 continue;
6 end

// Discard Roman Urdu vowels (a,e,i,o,u,y)
7 if w[i] ==‘a’ || w[i] ==‘e’ || w[i] ==‘i’ || w[i] ==‘o’ || w[i] ==‘u’ || w[i] ==‘y’ then
8 continue;
9 end

// Encode character based on Table 2
10 e[j] = get encoding(w[i]);
11 j + +;

12 end
// Add 0s if encoding length less than 6

13 while j ≤ 6 do
14 e[j] = 0;
15 j + +;

16 end

ically optimized in Section 3.4 and 4.3.4. The similarity function returns a value in

the interval [0, 1] with higher values signifying greater similarity.

3.3 Features

The similarity function in Eq. 1 is instantiated with features representing each

word. In this work, we use three features: phonetic, string, and contextual, which

are computed based on rules or based on learning.

3.3.1 UrduPhone

We propose a new phonetic encoding scheme, UrduPhone, tailored for Roman Urdu.

Derived from Soundex (Knuth, 1973; Hall and Dowling, 1980), UrduPhone encodes

2 https://en.wikipedia.org/wiki/Urdu_alphabet

https://en.wikipedia.org/wiki/Urdu_alphabet
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Table 2. UrduPhone homophone mappings in Roman Urdu

Characters Urdu Alphabets IPA2 Example

q,k
�

� , ¸ [q], [k] qainchi [scissors], kitab [book]

c,sh,s � , �
� , � , �

H [s], [S], [s], [s] shadi [wedding], sadi [simple]

z,x 	P ,
	
X , 	

  , 	
� [z], [z], [z], [z] zameen [earth], xar [gold]

zh �P [Z] zhalabari [hail]

kh p [x] zakhmi [injured]

d X ,
�
X [d”], [ã] dahi [yogurt], doob [sink]

t �
H , �

H ,   [t”], [ú], [t”] tareef [praise], timatar [tomato]

m Ð [m] maut [death]

j h. [ “dZ] jism [body]

g À [g] gol [circular]

f
	

¬ [f] fauj [army]

b H. [b] bjli [lightening]

p H� [p] pyaz [onion]

l È [l] lafz [word]

ch h� [“tS] chehra [face]

h h , è
f

, ë
[h, H ], [h, H, ø] ,

[h, H]

haal [present],

bahar [spring], phal

[fruit]
n 	

à , à [n, ñ, ï, N], [ ˜ ] nazar [sight], larkioun [girls]

r P, �P [r], [ó] risala [magazine], guriya [doll]

w,v ð , ¨
[V, u:, o:, O:],
[a:, o:, e:, P, Q, ø]

waqt [time], vada [promise]

bh ìK.
[bh] bhaag [run]

ph ìK�
[ph] phool [flower]

jh ìk.
[ “dZh] bojh [weight], boj [weight]

th ì
�
K , ì

�
K [t”h], [th] thapki [pat], thokar [stumble]

dh ëX , ë
�
X [d”]h], [ãh] udhar [loan], dhool [drum]

rh ëP , ë �P [ rh], [óh] rhnuma [guide], barhna [to grow]

gh
	

¨ [G] ghalat [wrong]

a,i,e,o,u,y
�
@ , ø , þ , ð, ¨,


@

[a:, P, ø], [j, i:, a:],
[E:,e:], [V, u:, o:, O:],
[a:, o:, e:, P, Q, ø],
[P, ø]

aam [mango],

ilm [knowledge], ullu

[owl]

consonants by using similar sounds in Urdu and English. UrduPhone differs from

Soundex in two ways:

1) UrduPhone’s encoding of words contains six characters as opposed to four

in Soundex. An increase in encoding length reduces the possibility of mapping

semantically different words to one form. Soundex maps different words to a single

encoding, which, due to the limited encoding length, can cause errors when trying to

find correct lexical variations. See Table 1 for some examples of the differences. For

example, mustaqbil [future] and mustaqil [constant] encode to one form, MSTQ, in

Soundex but to two different forms using UrduPhone encoding. In a limited number

of cases, UrduPhone increases ambiguity by mapping lexical variations of the same
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word into different encodings, as in the case of please and plx. Since these words

share a similar context, these variations will map to one cluster with the addition

of contextual information. This is also shown during our experiments.

2) We introduce homophone-based groups, which are mapped differently in

Soundex. There are several Urdu characters, which map to the same Roman form.

For example, samar [reward], sabar [patience], and saib [apple], all start with dif-

ferent Urdu characters that have an identical Roman representation: s. We group

together homophones such as w, v as in taweez, taveez [amulet] and z, x as in

lolz, lolxx [laughter] or zara, xara [a bit]. One common characteristic with translit-

eration from Urdu to Roman script is the omission of the Roman character ’h’. For

example, the same Urdu word maps to both the Roman words samajh & samaj

[to understand]. This is especially true in the case of digraphs representing Urdu

aspirates such as dh, ph, th, rh, bh, jh, gh, zh, ch, and kh. A problem arises when

the longest common subsequence in words (if ’h’ is omitted) causes overlaps such as

(khabar [news], kabar [grave]) and (gari [car], ghari [watch]). Also, when sh comes

at the end of a word, as in khawhish, khawhis [wish]; when ’h’ is omitted, the sound

is mapped to the character s. Similarly, if there is a transcription error, such as

dushman [enemy] becomes dusman, the UrduPhone encoding is identical. Here, the

omission of ’h’ causes an overlap of the characters � and �
� .

The second column of Table 1 shows a few examples of Soundex encodings of

Roman Urdu words. In some cases, Soundex maps two semantically different words

to one code, which is undesirable in the task of lexical normalization. Table 2

shows a complete list of homophone-based mapping introduced in UrduPhone, and

Algorithm 2 shows the process to encode a word into an UrduPhone encoding.

Then, we compute the phonetic similarity of words wi and wj using Eq. 2.

σPij =

{
1 if UrduPhone(wi) == UrduPhone(wj)

0 otherwise
(2)

3.3.2 Learning String-similarity

The lexical variations of a word may have a number of overlapping sub-word units,

e.g., spelling variations of zindagi [life] include zindagee, zindagy, zaindagee and

zndagi with many overlapping sub-word units. To benefit from this overlap, we

define a string similarity function as follows:

σSij =
lcs(wi, wj)

min[len(wi), len(wj)] + edist(wi, wj)
(3)

Here, lcs(wi, wj) is the length of the longest common subsequence in words wi and

wj , len(wi) is the length of word wi, and edist(wi, wj) is the edit distance between

words wi and wj .

Edit Distance: The edit distance allows insertion, deletion and substitution opera-

tions. We obtain the cost of edit distance operations in two ways:
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Manually Defined – In a naive approach, we consider the cost of every operation

to be equal and set them to 1. We refer to this edit distance cost as edistman. This

technique has a downside of considering all operations equally necessary, which is

an erroneous assumption. For example, the substitution cost of a Roman character

’a’ to ’e’ should be less than the cost of ’a’ to ’z’ because both ’a’ and ’e’ have

related sounds in some contexts. It is possible to use these characters alternatively

when transliterating from Perso-Arabic script to Roman Script.

Automatically Learning Edit Distance Cost – In this approach, we automat-

ically learn the edit distance cost from the data. Consider a list of word pairs where

one word is a lexical variation of another word. One can automatically learn the

character alignments between them using an EM algorithm. The inverse character

alignment probability serves as the cost for the edit distance operations.

In our case, we do not have a cleaned list of word pairs to learn character align-

ments automatically. Instead, we try to learn these character alignments from the

noisy training data. To do this, we build a list of candidate word pairs by aligning

every word to every other word in the corpus as a possible lexical variation. We

split the words into characters and run the word-aligner GIZA++ (Och and Ney,

2003). Here, the word-aligner considers every character as a word and every word

as a sentence. We use the learned character alignments with one minus their prob-

ability as the cost for the edit distance function. We refer to this edit distance cost

as edistgiza.

Since the model learns the cost from the noisy data, likely, it is not a good repre-

sentative of the accurate edit distance cost that would be learned from the cleaned

data. In our alternative method, we automatically refine the list of candidate pairs

and learn character alignments from it. In this approach, we consider the problem

of lexical variations as a transliteration mining problem (Sajjad et al., 2011),

where, given a list of candidate word pairs, the algorithm automatically extracts

word pairs that are transliterations of each other. For this purpose, we use the unsu-

pervised transliteration mining model of Sajjad et al. (2017), who define the model3

as a mixture of a transliteration sub-model and a non-transliteration sub-model.

The transliteration sub-model generates the source and target character sequences

jointly and can model the dependencies between them. The non-transliteration

model consists of two monolingual character sequence models that generate source

and target strings independently of each other. The parameters of the transliter-

ation sub-model are uniformly initialized and then learned during EM training of

the complete interpolated model. During the training process, the model penalizes

character alignments that are less likely to be part of a transliteration pair and

favors character alignments that are likely to be part of a transliteration pair.

We train the unsupervised transliteration miner on our candidate list of word

pairs, similar to the GIZA++ training. Then, we learn the character alignments.

3 https://github.com/hsajjad/transliteration_mining

https://github.com/hsajjad/transliteration_mining
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We then use these character alignments with one minus their probability as the

cost for the edit distance metric. We refer to this cost as edistminer.

3.3.3 Context Information

We observe that non-standard variants of a standard word have similar contexts.

For example, truck and truk will be used in similar contexts, which might be very

different from cat. We used this idea to define a contextual similarity measure

between two words. We compare the top-k frequently occurring preceding (previous)

and following (next) words’ features of the two words in the corpus. The previous

and next word’s features can be each word’s ID, UrduPhone ID, or cluster/group

ID (based on initial clustering of the words).

Let ai1, a
i
2, . . . , a

i
5 and aj1, a

j
2, . . . , a

j
5 be the features (word IDs, UrduPhone IDs,

or cluster IDs) for the top-5 frequently occurring words preceding word wi and wj ,

respectively. We use the similarity between the two words based on this context as

defined by Hassan et al. (2009):

σCij =

∑5
k=1 ρk∑5
k=1 k

(4)

Here, ρk is zero for any aik (i.e., the kth word in the context of wi) when there exists

no match in aj∗ (i.e., in the context of word wj). Otherwise, ρk = 5−max[k, l]− 1

where aik = ajl and l is the highest rank (smallest integer) at which a previous match

has not occurred. In other words, this measure is the normalized sum of rank-based

weights for matches in the two sequences, with more importance given to those

occurring in higher ranks. Note that contextual similarity can be computed even

if the context sizes of the two words are different, an essential step as a word may

not have 5 distinct words preceding it in the corpus.

We combine all the features using our similarity measure from Eq. 1. The code

for combining a set of features is in Algorithm 3.

3.4 Parameter Optimization

The feature weights α(f) used to measure word similarity in Eq. 1 can be tuned to

optimize prediction accuracy. For example, by changing the weights in our clustering

framework (see Eq. 1), we can make contextual similarity more prominent (by

increasing the weight αC) so that words with the same UrduPhone encoding but

different contexts are placed in separate clusters (see discussion in Section 4.4). But,

we also test with other weight combinations and features, including using both word

IDs and UrduPhone IDs to represent the top-5 most frequently occurring previous

and next words (rather than just one representation as used in other experiments).

We identify corresponding weights for contexts based on word IDs and UrduPhone

IDs as αC1 and αC2 , respectively. The weights for the phonetic and the string

features are αP and αS , respectively.

We also optimize n variables to maximize an objective function using the Nelder-

Mead method (Nelder and Mead, 1965). We use the Nelder-Mead method to max-
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Algorithm 3: Similarity measure with weighted feature combination
Input: wi, wj (input words), F (set of features used), α (set of feature weights)
Output: sim (similarity between wi & wj)

1 total weight = 0;
2 sum = 0;
3 if phonetic ∈ F then
4 encodedi = urduphone(wi);
5 encodedj = urduphone(wj);

6 σP
ij = phonetic sim(encodedi == encodedj); // see Eq. 2

7 sum = sum+ αP × σP
ij ;

8 total weight = total weight+ αP ;

9 end
10 if string ∈ F then

11 σS
ij = string sim(wi, wj); // see Eq. 3

12 sum = sum+ αS × σS
ij ;

13 total weight = total weight+ αS ;

14 end
15 if context ∈ F then
16 previ = top5prev(wi);
17 prevj = top5prev(wj);

18 σ
C1
ij = context sim(previ, prevj); // see Eq. 4

19 sum = sum+ αC1 × σC1
ij ;

20 total weight = total weight+ αC1 ;
21 nexti = top5next(wi);
22 nextj = top5next(wj);

23 σ
C2
ij = context sim(nexti, nextj); // see Eq. 4

24 sum = sum+ αC2 × σC2
ij ;

25 total weight = total weight+ αC2 ;

26 end
27 if word2vec ∈ F then
28 veci = word vector(wi); // see Section 4.3.5
29 vecj = word vector(wj);

30 σW
ij = cosine(veci, vecj);

31 sum = sum+ αW × σW
ij ;

32 total weight = total weight+ αW ;

33 end
34 if 2skip1gram ∈ F then

35 sigmaGij = 2skip1gram(wi, wj); // see Algorithm 5

36 sum = sum+ αG × σG
ij ;

37 total weight = total weight+ αG;

38 end
39 sim = sum

total weight ;

imize the F-measure by optimizing the feature weights of our Similarity function

in Eq. 1, as well as the hyperparameter, threshold t, in Line 21 of Algorithm

1. We apply 10-fold cross-validation on the SMS (small) dataset (Table 9). We will

describe the results in Section 4.3.4.

4 Experiments

In this section, we first describe our evaluation setup and the datasets used for the

experiments. Later, we present the results.
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4.1 Evaluation Criteria

Since the lexical normalization of Roman Urdu is equivalent to a clustering task,

we can adopt measures for evaluating clustering performance. We need a gold stan-

dard database defining the correct groupings of words for evaluation. This database

contains groups of words such that all words in a given group are considered lex-

ical variations of a lexical entry. In clustering terminology, words within a cluster

are more similar than words across clusters. On the other hand, we typically use

the accuracy (i.e., the proportion of OOV words that correctly match IV words)

to evaluate the lexical normalization of a standardized language like English. This

measure is appropriate because we know the IV words and can be compared to

every OOV word.

Bagga and Baldwin (1998) discussed measures for evaluating clustering perfor-

mance and recommend the use of BCubed precision, recall, and F-measure. These

measures possess all four desirable characteristics for clustering evaluation (homo-

geneity, completeness, rag bag, and cluster size vs. the number of clusters – see

Vilain et al. (1995) for details). In the context of the lexical normalization of non-

standard languages, they provide the additional benefit that they are computed

for each word separately and then averaged for all words. For example, if a cluster

contains all variants of a word and nothing else, then it is considered homogeneous

and complete, and this is reflected in its performance measures. These measures

are robust in the sense that incorporating small impurities in an otherwise pure

cluster impacts the measures significantly (rag bag characteristic), and the trade-

off between cluster size and the number of clusters is reflected appropriately. Other

clustering evaluation measures do not possess all these characteristics and, in partic-

ular, commonly-used measures like entropy and purity are not based on individual

words.

Let L = {`1, · · · , `K} be the set of output clusters and L′ = {`′1, · · · , `′K} be the

set of actual or correct clusters in the gold standard. We define correctness for word

pair wi and wj as

C(wi, wj) =

{
1 iff (wi ∈ `m, wj ∈ `m) and (wi ∈ `′n, wj ∈ `′n)

0 otherwise
(5)

In other words, C(wi, wj) = 1 when words wi and wj appear in the same cluster

(`m) of the clustering and the same cluster (`′n) of the gold standard; otherwise,

C(wi, wj) = 0. By definition, C(wi, wi) = 1.

The following expressions give the BCubed precision P (wi) and recall R(wi) for

a word wi:

P (wi) =

∑N
j=1 C(wi, wj)

|`m|
(6)

R(wi) =

∑N
j=1 C(wi, wj)

|`′m|
(7)
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Here, `m and `′m identify the cluster in the clustering and gold standard, respec-

tively, that contain word wi. The summation for Eq. 6 & Eq. 7 is over all the words

j. Finally, we define the BCubed F-measure F (wi) of word wi in the usual manner

as:

F (wi) = 2× P (wi)×R(wi)

P (wi) +R(wi)
(8)

We compute the overall BCubed precision, recall, and F-measure of the clustering

as the average of the respective values for each word. For example, we calculate the

F-measure of the clustering as
∑N

i=1 F (wi)

N .

4.2 Datasets

We utilize four datasets in our experimental evaluation. The first and second

datasets, SMS (small) and SMS (large), are obtained from Chopaal, an internet-

based group SMS service.4 These two versions are from two different time peri-

ods and do not overlap. The third dataset, Citizen Feedback Monitoring Program

(CFMP) dataset, is a collection of SMS messages sent by citizens as feedback on the

quality of government services (e.g., healthcare facilities, property registration).5

The fourth dataset, Web dataset, is scraped from Roman Urdu websites on news,6

poetry,7 SMS,8 and blogs.9 Unless mentioned otherwise, the SMS (small) dataset

is used for the experiment. All four datasets are pre-processed with the following

steps: (1) Remove single-word sentences; (2) add tags to URLs, email addresses,

time, year, and numbers with at least four digits; (3) Collapse more than two re-

peating groups to only two (e.g., hahahaha to haha); (4) Replace punctuations

with space; (5) Replace multiple spaces with single space. For the SMS (small) and

SMS (large) datasets, we carry out an additional step of removing group messaging

commands.

We evaluate the performance of our framework against a manually annotated

database of Roman Urdu variations developed by Khan and Karim (2012). This

database, which we refer to as the ‘gold standard’, is developed from a sample of the

SMS (small) dataset. It maps each word to a unique ID representing its standard or

normal form. There are 61,000 distinct variations in the database, which map onto

22,700 unique IDs. The number of variations differs widely for different unique IDs.

For example, mahabbat [love] has over 70 variations such as muhabaat, muhabbat,

and mhbt. The gold standard database also includes variations of English language

words that are present in the dataset.

Table 3 shows statistics of the datasets in comparison with the evaluation gold

4 http://chopaal.org
5 http://cfmp.punjab.gov.pk/
6 http://www.shashca.com, http://stepforwardpak.com/
7 https://hadi763.wordpress.com/
8 http://www.replysms.com/
9 http://roman.urdu.co/

http://chopaal.org
http://cfmp.punjab.gov.pk/
http://www.shashca.com
http://stepforwardpak.com/
https://hadi763.wordpress.com/
http://www.replysms.com/
http://roman.urdu.co/
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Table 3. Datasets and gold standard database statistics

Dataset SMS (small) SMS (large) CFMP Web

Message Count 159,158 1,994,136 183,083 5,423

Unique words 89,692 366,583 101,395 21,800

Overlap with

Gold Standard (OGS)
57,699 51,477 23,112 12,634

OGS and context

information ≥ 1
51,133 49,272 18,516 9,773

UrduPhone IDs

Previous Case
11,146 9,738 4,683 6,171

OGS and

context information ≥ 5
12,852 30,856 1,414 2,479

UrduPhone IDs for

Previous Case
4,218 6,681 1,305 2,175

standard database. The “Overlap with Gold Standard” means the number of words

in the vocabulary of a dataset that also appear in the gold standard lexicon Khan

and Karim (2012). The table also gives the number of words that appear in the

gold standard and have at least (1) one preceding and at least one following word

(context size ≥ 1), and (2) five distinct preceding and following words in the dataset

(context size ≥ 5). We evaluate these numbers of words for the respective datasets.

The UrduPhone IDs of a dataset gives the number of distinct encodings of the

evaluation words in the dataset (corresponding to the number of initial clusters).

4.3 Experimental Results and Analysis

We conduct different experiments to evaluate the performance of our clustering

framework for lexical normalization of Roman Urdu. We test different combina-

tions of features (UrduPhone, string, and/or, context) and different representa-

tions of contextual information (UrduPhone IDs or word IDs). We also establish

two baseline methods for comparisons.

Table 4 gives the details of each experiment’s setting. Exp. 1 and 2 are baselines

corresponding to segmentation using UrduPhone encoding and string similarity-

based clustering (with initial random clusters equal to the number of UrduPhone

segments), respectively. The remaining experiments utilize different combinations of

features (string, phonetic, and context) in our clustering framework. Here, for string-

based features, we used manually defined edit distance rules.10 The initial clustering

in these experiments is given by segmentation via UrduPhone encoding. In Exp. 3 no

contextual information is utilized, while in Exp. 4 and Exp. 5 the context is defined

by the top-5 most frequently occurring previous and next words (context size ≥

10 Section 3.3.2 presents a comparison of using automatically learned edit distance rules
with manually defined rules.
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5) represented by their UrduPhone IDs and word IDs, respectively. In Exp. 2 to

5, we select the similarity threshold t such that the number of discovered clusters

is as close as possible to the number of actual clusters in the gold standard for

each dataset. This is done to make the results comparable across different settings.

During our experiments, we observed that a threshold within a range of 0.25− 0.3

was optimal for smaller datasets, including Web & CFMP, and 0.4 − 0.45 gave

the best performance for larger datasets, including SMS (small) & SMS (large).

However, we also tried to find the optimum threshold value using the Nelder-Mead

method (see Table 9), which maximizes the F-Measure.

Figures 4a, 4b, 4c, and 4d show performance results on SMS (small), SMS (large),

CFMP, and Web datasets, respectively. The x-axes in these figures show the ex-

periment IDs from Table 4, while the left y-axes give the BCubed precision, recall,

and F-measure, and the right y-axes describe the difference between the number of

predicted and actual clusters.

The baseline experiment of segmentation via UrduPhone encoding (Exp. 1) pro-

duces a high recall and a low precision value. This is because UrduPhone tends to

group more words in a single cluster, which decreases the total number of clusters

and results in an overall low F-measure. The second baseline of string-based clus-

tering (Exp. 2) gives similar values for precision and recall since the average number

of clusters is closer to that of the gold standard. Although the F-measure increases

over Exp. 1, string-based similarity alone does not result in sound clustering.

Combining the string and phonetic features in our clustering framework (Exp. 3)

results in an increase in precision and recall values as well as a marked increase in

F-measure from the baselines (e.g., there is an increase of 9% for the SMS (small)

dataset, see Fig. 4a). When contextual information is added (via UrduPhone IDs

in Exp. 4 and word IDs in Exp. 5), precision, recall, and F-measure values increase

further. For example, for the SMS (small) dataset, the F-measure increases from

77.4% to 79.7% (2% gain) and from 77.4% to 80.3% (3% gain) from Exp. 3 to Exp.

4 and Exp. 5, respectively.

The higher performance values obtained for the CFMP and Web datasets (Fig.

4c and Fig. 4d) are due to fewer variations in these datasets, as evidenced by their

fewer numbers of unique words in comparison to the SMS datasets.

Overall, our clustering framework using string, phonetic, and contextual features

shows a significant F-measure gain when compared to baselines Exp. 1 and Exp.

2. We obtain the best performances when we use UrduPhone and string similarity,

and when the context is defined using Word IDs (Exp. 5).
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Table 4. Details of experiments’ settings

Exp. Initial clusters String Phonetic Context

1 UrduPhone 7 7 –

2 Random 3 7 –

3 UrduPhone 3 3 –

4 UrduPhone 3 3 UrduPhone ID

5 UrduPhone 3 3 Word ID

Fig. 3. Performance results for experiments in Table 4
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(a) SMS (small) dataset
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(b) SMS (large) dataset
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(c) CFMP dataset
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(d) Web dataset

4.3.1 UrduPhone

We compare UrduPhone with Soundex and its variants11 for lexical normalization

of Roman Urdu. All the phonetic encoding algorithms are used to group/segment

11 We use Apache Commons Codec for DoubleMetaphone (https://commons.apache.
org/proper/commons-codec/apidocs/org/apache/commons/codec/language/
DoubleMetaphone.html) & NLTK-Trainer’s phonetic library (https://github.
com/japerk/nltk-trainer/blob/master/nltk_trainer/featx/phonetics.py) for the
remaining

https://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html
https://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html
https://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html
https://github.com/japerk/nltk-trainer/blob/master/nltk_trainer/featx/phonetics.py
https://github.com/japerk/nltk-trainer/blob/master/nltk_trainer/featx/phonetics.py
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Table 5. Comparison of UrduPhone with other algorithms on the SMS (small)

dataset. Single clusters are clusters with one word only. Actual clusters = 7,589

Algorithm Precision Recall F-measure Clusters
Single

Clusters

Soundex 0.216 0.960 0.353 1,647 525

Metaphone 0.468 0.871 0.601 3,906 2,061

Double Metaphone

Primary Encoding
0.295 0.931 0.448 2388 1008

Double Metaphone

Alternative Encoding
0.280 0.927 0.430 2291 964

Caverphone 0.286 0.885 0.433 2,498 1,315

NYSIIS 0.584 0.668 0.623 6,550 4,376

UrduPhone 0.508 0.923 0.655 4,272 2,399

words based on their encoding and then evaluated against the gold standard. Table

5 shows the results of this experiment on the SMS (small) dataset.

We observe that UrduPhone outperforms Soundex, Caverphone, and Metaphone

while NYSIIS’s F-measure is comparable to that of UrduPhone. NYSIIS produces a

large number of single-word clusters (4,376 have only one word out of 6,550 groups),

which negatively impacts its recall. UrduPhone produces fewer clusters (and fewer

one-word clusters), giving high recall. This property of UrduPhone is desirable for

initial clustering in our clustering framework, as Lex-Var can split them but cannot

collapse them.

We also test our clustering framework by replacing UrduPhone with NYSIIS as

the phonetic algorithm. In Exp. 5 on the SMS (small) dataset, we find that the

F-measure increases by only 5% over the NYSIIS baseline (Table 5), which is lower

than the F-measure achieved with UrduPhone (Fig. 4a).

In another experiment, we analyze the effect of encoding length on the perfor-

mance of the algorithm. We use the SMS (small) dataset to generate UrduPhone

encodings of different sizes and cluster the words accordingly. Fig. 4 summarizes

the results. We see an increase in F-measure with an increase in encoding length

until length seven and eight, where we achieve similar performance.

Table 2 defines the UrduPhone rules based on well-known techniques used for

phonetic encoding schemes (dropping vowels) and on common knowledge of how

people write Roman Urdu. As an additional experiment, we try to learn these

rules from some datasets and use them to define our encoding scheme. We call this

approach UrduPhoneprob. Jiampojamarn et al. (2007) propose an alignment tool12

based on the initial work of Ristad and Yianilos (1998). Instead of mapping each

grapheme to a single phoneme, their method creates a many-to-many mapping. We

use an Urdu script, and Roman Urdu transliteration parallel corpus scraped from

12 https://github.com/letter-to-phoneme/m2m-aligner
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Fig. 4. Effect of varying UrduPhone encoding length on SMS (small) dataset (Exp

5)
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Table 6. Experiments using UrduPhone, learning rules from Urdu-Roman Urdu

transliteration corpus

Features Precision Recall F-measure

UrduPhone (Exp. 1) 0.508 0.923 0.655

UrduPhone + String + Context (Exp. 5) 0.790 0.817 0.803

UrduPhoneprob 0.503 0.922 0.651

UrduPhoneprob + String + Context 0.512 0.919 0.658

the internet.13 Unlike the Roman Urdu words in our experiment dataset, these have

more standardized spellings. We use a maximum length of two as a parameter for

training the model. Our output is probabilities of Roman Urdu characters mapping

to Urdu script characters or to null.

We use the maximum probability mapping rules to define our UrduPhoneprob
encodings. We experimented with using UrduPhoneprob as the feature in our system

and also in combination with other string and context features. Table 6 shows the

results.

4.3.2 String-similarity

In section 3.3.2, using the SMS (small) dataset, we compare the performance of

three methods used to calculate edit distance cost – manually defined (edistman),

13 http://www.ijunoon.com/transliteration/
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Table 7. Varying edit distance cost for SMS (small) dataset. Learning character

pair alignment probabilities

String feature Precision Recall F-measure

edistman (Exp. 5) 0.790 0.817 0.803

edistgiza 0.786 0.817 0.802

edistminer 0.794 0.813 0.803

automatically learned using GIZA++ (edistgiza), and automatically learned using

unsupervised transliteration mining (edistminer).
14

For each word in our vocabulary, we found the 100 closest pairs, where closeness is

defined by our similarity function as described in Eq. 1 using UrduPhone, edistman
for the string similarity, and context of previous and next Word IDs as the feature

set. We created a list of candidate word pairs by pairing every word with every

other word in the cluster of 100 closest words. We take each Roman Urdu word as

a sequence of Roman characters and its original Urdu script as a sequence of Urdu

characters. We learn the alignment between the above two character-sequences in

two different ways. First, we apply GIZA++ and learn the alignment with the

Expectation-Maximization (EM) algorithm. Second, we implemented an unsuper-

vised transliteration mining tool, details see Sajjad et al. (2017). Here, GIZA++

considers every word pair in the list of candidate pairs as a correct word pair to

learn character alignments, whereas the transliteration mining tool penalizes the

pairs that are less likely to be transliterations of each other during the training

process. Since our list of candidate pairs is a mix of correct and incorrect pairs, the

character alignments learned by the transliteration miner are likely to be better.

The edit distance cost for each pair of characters can be computed from charac-

ter alignments as cost(chari, charj) = |1 − P (chari, charj)|. Our string similarity

function uses these edit distance costs instead of manually defined costs. Table 7

reports the results for both of these experiments using the SMS (small) dataset.

The F-measure of the cost learned by the miner and GIZA++ is competitive with

the manually defined cost. edistgiza is affected by the noise in the data, which can

be seen in its low precision compared to other methods. edistminer achieved the

highest precision, though it has the lowest recall.

4.3.3 Context Size

The experiments presented in the previous section used a context of top-5 frequently

occurring previous and next words. Here, we study the effect of varying context size

on the performance of our clustering framework. Table 8 shows the F-measure for all

experiments with two different context sizes on the SMS (small) dataset. Decreasing

the minimum context list size to one increases the number of words to evaluate;

14 The experiment reported in previous sections used the manually defined edit distance
cost, which associates cost of 1 for each insertion, deletion, and substitution operation.
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Table 8. Performance (F-measure) with two different context sizes. Details of the

experiments are given in Table 4.

Exp. SMS (small) SMS (large) CFMP Web

Context Size = 5

1 0.651 0.588 0.852 0.831

2 0.683 0.567 0.857 0.845

3 0.774 0.692 0.891 0.867

4 0.797 0.693 0.900 0.876

5 0.803 0.690 0.917 0.881

Context Size = 1 to 5

1 0.593 0.576 0.616 0.641

2 0.542 0.537 0.598 0.756

3 0.658 0.645 0.712 0.785

4 0.617 0.642 0.692 0.778

5 0.637 0.640 0.695 0.794

therefore, results are reported for all experiments with context size between 1 and

5, even though Exp. 1 to 3 do not use contextual information. Decreasing the

minimum context list size to one also explains the lower performance values for

these experiments as compared to those with context size of at least 5.

We see that context size of 1 to 5 (including words with contexts defined by at

least 1 to 5 top previous/next words) is less effective in lexical normalization and

sometimes even negatively impacts performance. For example, for the SMS (small)

and CFMP datasets, Exp. 3 (no contextual information) performs better than Exp.

4 and Exp. 5 due to the noisy nature of shorter contexts.

For further analysis, we carried out experiments where we changed the context

length from 1 to 5; an approach that differs from the previous experiments in which

we used context size = 5 & ≥ 1. Fig. 5 describes the results of the tests carried

out on the SMS (small) dataset. We see a significant increase in performance when

context size changes from 2 to 3. After 3, there is a slight performance increase.

The best F-measure is from a context size of 4 and 5.

4.3.4 Parameters: Feature Weights and Clustering Threshold

Feature Weights As discussed in Section 3.4, we test the impact of changing the

weights in our clustering framework (see Eq. 1). We assumed that all features have

equal weights in experiments presented in Section 4.3. Then, we change the feature

weights to emphasize different features. The increased weights caused words to

break their initial UrduPhone clusters in favor of better contextual similarity, but

the overall performance did not change. We tried several combinations, including

using both the contexts (i.e., word IDs and UrduPhone IDs).

Table 9 shows the performance of our clustering framework on the SMS (small)
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Fig. 5. Effect of varying context size on SMS (small) dataset (Exp 5)
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dataset with different feature weight combinations. As a comparison, we show re-

sults for Exp. 5 (context represented by word IDs only) and have the following

observations with respect to F-Measure. (1) F-measure does not improve when us-

ing both word IDs and UrduPhone IDs to represent the context. (2) F-measure

degrades when removing the phonetic similarity feature. (3) F-measure achieves

the highest value when we set a higher weight to phonetic and contextual similarity

than to string similarity.

We also use the Nelder-Mead method to maximize the F-measure by optimizing

the feature weights of our similarity function in Eq. 1, as well as the threshold

mentioned in line 21 of Algorithm 1 on cross-validation set (see Section 3.4). The

average F-measure is slightly better than what we observed with manual selection

of weights in Exp. 5 (described in Table 4).

Clustering Threshold We analyze the performance of Exp. 5 (best setting) for the

SMS (small) dataset with varying threshold t (Fig. 6). The value of t controls the

number of clusters smoothly, and precision increases with this number while F-

measure reaches a peak when the number of predicted groups is close to that of the

gold standard.

4.3.5 Comparison with Other Clustering Methods and Variations

In addition to our k-medoids based Lex-Var clustering method, we propose us-

ing agglomerative hierarchical clustering (Hierarchical Lex-Var) as our clustering

framework for lexical normalization. To reduce the search complexity at each merge

decision, we form (once) and search within the ten most similar words for each word

(neighborhood). At each merge decision, we merge the two most similar words

and/or groups (if either word is part of a group) in their respective neighborhoods.
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Table 9. Performance with different weights for features (Exp. 5 on SMS (small)

dataset). αP = Weight of phonetic feature, αS = Weight of string feature, αC1 =

Weight of context using Word ID , αC2 = Weight of context using UrduPhone ID.

Experiment Precision Recall F-measure

Exp. 5 0.790 0.817 0.803

Nelder-Mead method 0.797 0.843 0.819

αP = 1.0, αS = 1.0, αC1 = 1.0, αC2 = 1.0 0.777 0.814 0.795

αP = 1.0, αS = 1.0, αC1 = 2.0, αC2 = 0.0 0.784 0.810 0.797

αP = 1.0, αS = 1.5, αC1 = 2.0, αC2 = 0.0 0.801 0.812 0.807

αP = 1.0, αS = 1.0, αC1 = 1.5, αC2 = 0.0 0.801 0.811 0.806

αP = 1.5, αS = 1.0, αC1 = 2.0, αC2 = 0.0 0.701 0.819 0.805

αP = 1.0, αS = 1.0, αC1 = 0.0, αC2 = 2.0 0.768 0.781 0.774

αP = 1.0, αS = 1.0, αC1 = 2.0, αC2 = 1.5 0.736 0.763 0.749

αP = 1.0, αS = 1.0, αC1 = 1.5, αC2 = 0.5 0.793 0.809 0.801

αP = 0.0, αS = 1.0, αC1 = 1.0, αC2 = 0.0 0.754 0.758 0.756

αP = 0.0, αS = 1.0, αC1 = 1.5, αC2 = 0.0 0.710 0.726 0.717

αP = 1.5, αS = 1.0, αC1 = 1.0, αC2 = 0.0 0.802 0.811 0.807

αP = 1.5, αS = 1.0, αC1 = 1.5, αC2 = 0.0 0.804 0.813 0.808

αP = 2.0, αS = 1.0, αC1 = 2.0, αC2 = 0.0 0.813 0.809 0.811

αP = 2.0, αS = 1.5, αC1 = 2.0, αC2 = 0.0 0.791 0.815 0.803

Fig. 6. Effect of varying threshold t on SMS (small) dataset (Exp 5)
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Cluster Difference

Algorithm 4 describes the Hierarchical Lex-Var Clustering algorithm. We tested

with a neighborhood size of 10 and 100. The results are mentioned in Table 10.

Hierarchical Lex-Var, when used instead of Lex-Var, results in slightly bet-

ter performance. However, it is significantly slower than Lex-Var. Even with our

neighborhood-based optimization, hierarchical clustering takes hours to converge,
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Table 10. Performance of Hierarchical Lex-Var on SMS (small) dataset.

Experiment Precision Recall F-measure

Exp. 5 0.790 0.817 0.803

Nelder-Mead method 0.797 0.843 0.819

Neighborhood= 10 0.793 0.837 0.815

Neighborhood= 100 0.771 0.849 0.808

while our Lex-Var algorithm converges in minutes when processing the SMS (small)

dataset.

Algorithm 4: Hierarchical Lex-Var
Input: W = {w1, w2, . . . , wN} (words), t (similarity threshold), K (neighborhood size)
Output: L = {`1, `2, . . . , `K} (predicted clusters)

1 L =W;
/* Create a similarity matrix */

2 for ∀ wi ∈ W do
3 for ∀ wj ∈ W \ wi do
4 Sim matrixi,j = S(wi, wj);
5 end

6 end
/* Create K sized neighborhoods for each word */

7 N = {};
8 for ∀ wi ∈ W do
9 ni = get max k(Sim matrixi,, K); // Get K most similar words to wi

10 N = N ∪ {ni};
11 end
12 repeat

/* Assign word to clusters */
13 for ∀ wi ∈ W do
14 closest = null;
15 maxSim = 0;
16 for ∀ wj ∈ Ni do
17 if S(wi, nj) > t and S(wi, nj) > maxSim then
18 maxSim = S(wi, nj);
19 closest = nj ;

20 end

21 end
22 if closest ! = null then // Move word wi to cluster `j
23 `j = `j ∪ {wi} | closest ∈ `j ;
24 end

25 end

26 until stop condition Satisfied;

Additionally, we compare our clustering framework with other clustering methods

as independent approaches. We also test with variations in similarity features of our

clustering framework. We report the following experiments:

1. Rule-based transliteration: Each word in the vocabulary was transliterated

based on the method by Ahmed (2009). The final words were mapped to an

Urdu word dictionary of around 150,000 words.15 Each Urdu word acted as

a cluster label.

15 https://raw.githubusercontent.com/urduhack/urdu-words/master/words.txt

https://raw.githubusercontent.com/urduhack/urdu-words/master/words.txt
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2. Brown clustering: Brown clustering is a hierarchical clustering method for

grouping words based on their contextual usage in a corpus (Brown et al.,

1992). We use this as an independent approach for the lexical normalization

of Roman Urdu.

3. Word2Vec clustering: Word2Vec represents words appearing in a corpus by

fixed-length vectors that capture their contextual usage in the corpus (Mikolov

et al., 2013). The Word2Vec model is generated using the gensim16 python

package to learn vectors for each Roman word. For learning the word vectors,

we used the minimum count of 5, dimension size of 100, and 10 iterations.

Words are clustered using K-Means clustering on word vectors, and we report

the performance for lexical normalization of Roman Urdu.

4. 2-skip-1-grams: In our clustering framework for lexical normalization, we use

the 2-skip-1-gram approach with Jaccard coefficient (Jin, 2015) to compute

string similarity (rather than our string similarity function (Eq. 3)). Algorithm

5 shows the 2-skip-1-gram algorithm.

5. 2-skip-1-gram + string feature: We use both 2-skip-1-gram and our string sim-

ilarity functions for computing string similarity in our clustering framework

for lexical normalization.

6. ‘h’ omitted UrduPhone: We use a modified version of UrduPhone in our clus-

tering framework for lexical normalization. The modified version discards as-

pirated characters in the encoding. For example, encoding for mujhay [me]

becomes identical to that for mujay [me] to handle ’h’ omission.

7. Word2Vec Vectors (50): We generate Word2Vec vecctors of size 50. We use the

cosine similarity of these vectors instead of the contextual similarity described

in Equation 4.

8. Word2Vec Vectors (100): We increase the size of Word2Vec vectors to 100.

9. Word2Vec Words: Word2Vec vectors are used to find the ten most similar

words for each word. These neighboring words define the context of each

word, and contextual similarity is computed using Eq. 4. We use our clustering

framework for lexical normalization.

10. Word IDs + Word2Vec Words: We use two contextual features: top-5 fre-

quently occurring previous/next words represented by word IDs (like in Exp.

5) and top-10 most-similar words according to Word2Vec (as above).

Table 11 summarizes the results. Experiment 1 is a rule-based lexical normal-

ization method. Experiments 2 and 3 are independent clustering methods for lexi-

cal normalization. We also modify string features (experiments 4 and 5), phonetic

features (experiment 6), and contextual features (experiments 7, 8, 9, and 10),

respectively, in our clustering framework.

We can make the following observations from these experiments. (1) Rule-based

transliteration performs slightly lower than our clustering method (2) Brown clus-

tering and Word2Vec clustering are unsuitable for lexical normalization as evi-

denced by their poor performance. (3) Word2Vec-based context (either Word2Vec

16 https://github.com/RaRe-Technologies/gensim

https://github.com/RaRe-Technologies/gensim
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Algorithm 5: 2-skip-1-gram
Input: wi, wj (pair of words)

Output: σG
ij (2-skip-1-gram similarity)

1 m = length(wordi);
2 A = φ;
3 for k ∈ 1,m− 2 do
4 X = {wordi[k]}, {wordi[k + 2]};
5 A = A ∪X;

6 end
7 n = length(wordj);
8 B = φ;
9 for l ∈ {1 · · ·n− 2} do

10 Y = {wordj [l]}, {wordj [l + 2]};
11 B = B ∪ Y ;

12 end

13 σG
ij =

|A∩B|
|A∪B| ;

Table 11. Performance of other clustering methods and variations in our

framework on SMS (small) dataset.

Experiment Precision Recall F-measure

Rule-based (Ahmed (2009)) 0.833 0.765 0.797

Other methods
Brown clustering 0.024 0.447 0.046

Word2Vec clustering 0.350 0.221 0.271

Additional features

2-skip-1-gram 0.782 0.810 0.796

2-skip-1-gram + String feature 0.791 0.799 0.795

’h’ omitted UrduPhone 0.796 0.808 0.802

Word2Vec Vectors (50) 0.782 0.802 0.792

Word2Vec Vectors (100) 0.795 0.803 0.799

Word2Vec Words 0.777 0.779 0.778

Word IDs + Word2Vec Words 0.780 0.808 0.793

vectors or similar words) and 2-skip-1-gram-based string features do not outper-

form our context and string features. One possible reason for the low performance

of Brown clustering and Word2Vec could be the small size of the training data.

These algorithms require a huge amount of data to learn.

4.3.6 Lexical Normalization of English Text

To test the robustness of our dataset for other languages, we experimented with an

English dataset provided by Derczynski et al. (2013) and used in the W-NUT 2015

task.17 The gold standard we used is the lexical normalization dictionary provided

by the University of Melbourne.18 The dataset has more than 160,000 messages con-

taining 60,000 unique words. After pre-processing (the same pre-processing steps as

17 https://noisy-text.github.io/norm-shared-task.html
18 Available on the W-NUT 2015 website

https://noisy-text.github.io/norm-shared-task.html
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Table 12. Performance of Lex-Var on English dataset. We used Soundex &

UrduPhone encodings as phonetic features

Language Phonetic Encoding Precision Recall F-measure

Roman Urdu (Exp. 5) UrduPhone 0.790 0.817 0.803

English Soundex 0.950 0.948 0.949

English UrduPhone 0.967 0.961 0.965

for the Roman Urdu datasets), we get a 2,700 word-overlap with the gold standard.

For the phonetic encoding, we tested with Soundex and UrduPhone.

Table 12 summarizes the results along with the best results for the Roman Urdu

dataset from Table 4. We observe an F-measure of more than 90% with both en-

coding schemes, with UrduPhone performing better than Soundex. This difference

in performance is presumably due to the extended encoding size in UrduPhone,

which makes it possible to keep more information about the original word.

4.4 Error Analysis

To gain a better understanding of our clustering framework, we analyze the output

of different experiments with examples of correct and incorrect lexical normaliza-

tion. While lexical normalization based on UrduPhone mappings (Exp. 1) is a good

starting point for finding word variations, it produces some erroneous groupings.

We summarize these groupings as follows:

1. Words that differ only in their vowels are in the same cluster:

• takiya [pillow], tikka [grilled meat], take

• khalish [pain], khuloos [sincerity]

• baatain [conversations], button

• doosra [another], desire

• separate, spirit, support

2. Same words having different consonants map to different groups:

• mujhse, mujse meaning [from me]

• kuto, kuton meaning [dogs]

• whose, whoze

• skool, school

3. Words whose abbreviations or short forms do not have the same UrduPhone

mapping:

• government, govt

• private, pvt

• because, coz

• forward, fwd

Exp. 4 and Exp. 5 can separate words initially clustered incorrectly (group 1.)

(e.g., baatain [conversations] and button, spirit and support) due to contextual
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information and similarity differentiating the variations. Despite using phonetic

variations in combination with contextual feature we see incorrect clusterings in

the two experiments. We can divide these inaccuracies into several groups.

1. Words that have different UrduPhone mappings but are in fact the same.

These are not clustered in the final outcome.

• [mujy ] and [mujhy ] meaning [me]

• [oper ] and [uper ] meaning [up]

• [prob] and [problem]

• [mornin] and [morng ]

• [number ] and [numbers]

• [please] and [plx,plz ]

2. Words that have the same UrduPhone mapping and are lexical variants but

are not clustered in the same group:

• [tareeka] and [tareka] meaning [way]

• [zamaane] and [zamany ] meaning [times]

• [msg ] and [message]

• [morng ] and [morning ]

• [cmplete,complet,complete] and [cmplt ]

3. Words that are different but have the same UrduPhone mapping and are

clustered together:

• maalik [owner], malika [queen], malaika [angels]

• nishaan [vestige], nishana [target]

• tareka [way], tariq [a common name meaning ’a night visitor’]

• what, white

• waiter, water

A closer look at the examples reveals that some words that have the same Urdu-

Phone mapping and should cluster together are found in separate groups (group 2.).

This result is due to low context similarity between the words, which causes them

not to group (e.g., tareeka and tareka meaning [way] have a contextual similarity

of 0.23, even though they have the same UrduPhone mapping).

Another prominent issue is that words in separate clusters in UrduPhone remain

separated in the output of Exp. 4 and Exp. 5 (groups 2. and 3.). This observation

highlights the point that our experiments do not perform well at handeling abbre-

viations (e.g., prob and problem), plurals (e.g., number and numbers), and some

phonetic substitutes (e.g., please and plx ). Our framework separates Roman Urdu

words that can be written with an additional consonant (e.g., mujy and mujhy

meaning [me]). It also maps words that start with a different vowel (e.g., oper and

uper meaning [up]).

To tackle the issue of low contextual similarity not overcoming the difference in

UrduPhone mapping, we doubled the weight assigned to the context feature. This

adjustment produces almost no change in overall performance when compared to

standard (Exp. 4 and Exp. 5). However, this adjustment causes more words with

different UrduPhone mappings to be clustered together, usually incorrectly:
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• acha [okay], nahaya [bathe], sucha [truthful]

• maalom [know], manzor [approve]

• chalang [jump], thapar [slap]

• darzi [tailor], pathar [stone]

• azmaya [to try], sharminda [ashamed]

Furthermore, as the same UrduPhone mappings do not restrict the clusters, this

variation produces interesting combinations. The words in the groups below, al-

though not lexical variants of each other, have strong contextual similarity and

sometimes can even be replaced (for the other) in the sentence.

• admi [man], larkay [boys], larki [girl]

• kufr [to unbelieve in God], shirk [to associate partners with God]

• shak [suspicion], yaqeen [certainty]

• loves, likes

• private, pvt

• cud, may, would

• tue, tuesday, wed

• blocked, kicked

• gov, government

5 Previous Work

Normalization of informal text messages and tweets has been a research topic of

interest (Sproat et al., 2001; Kaufmann and Kalita, 2010; Clark and Araki, 2011;

Wei et al., 2011; Pinto et al., 2012; Ling et al., 2013; Sidarenka et al., 2013; Roy

et al., 2013; Chrupa la, 2014; Desai and Narvekar, 2015), with the vast majority of

the work limited to English and other resource-rich languages. Our work focuses

on Roman Urdu, an under-resourced language, that does not have a gold standard

corpus with standard word forms. We restrict our task to finding lexical variations

in informal text, a challenging problem because every word is a possible variation

of every other word in the corpus. Additionally, the spelling variation problem of

Roman Urdu inherits inconsistencies that occur due to the transliteration of Urdu

words from Perso-Arabic script to Roman script. In our work, we model these

inconsistencies separately and in combination with other features.

Researchers have used phonetic, string, and contextual knowledge to find lexical

variations in informal text.19 Pinto et al. (2012); Han et al. (2012); Zhang et al.

(2015) used phonetic-based methods to find lexical variations.

Contractor et al. (2010) used string edit distance based on the longest common

subsequence ratio and edit distance of Consonant Skeletons (Prochasson et al.,

2007) of the IV-OOV words. Gouws et al. (2011) used a sizable English corpus to

19 Spelling correction is also considered as a variant of text normalization (Damerau, 1964;
Naseem, 2004; Fossati and Di Eugenio, 2007). Here, we limit ourselves to the previous
work on short text normalization.
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extract candidate lexical variations and re-score them based on lexical similarity.

We also use lexical similarity as a feature in our clustering framework but do not

have a reference to a Roman Urdu corpus with standard word forms. Jin (2015) also

generated an OOV-IV list by using the Jaccard Index (Levandowsky and Winter,

1971) between k -skip-n-grams of string s and standard word forms. As we do not

have these in Roman Urdu, we consider every word as a possible lexical variation

of every other word in the corpus. Similar to Jin (2015), we use k-skip-n-grams

in our additional experiments and find that they perform slightly worse than our

algorithm. Chrupa la (2014) used Conditional Random Field (Lafferty, 2001) to

learn the sequence of edits from labeled data.

Han et al. (2012) used word similarity and word context to enhance performance

by initially extracting OOV (out-of-vocabulary) – IV (in-vocabulary) pairs using

contextual similarity and then re-ranking them based on string and phonetic dis-

tances. In contrast, we define a similarity function that considers all three features

together to find lexical variations of a word. Unlike previous approaches, we have a

small corpus from which to extract contextually similar word pairs. Also, there is no

standard Roman Urdu dictionary that can be used to annotate words as either IV or

OOV. Li and Liu (2014) defined similarity measure as a combination of the longest

common subsequence, term frequency, and inner product of word embeddings. We

use the longest common subsequence as part of the string similarity feature. In our

additional experiments, we test with a cosine similarity of word embeddings (Table

11). Li and Liu (2014) used a combination of string similarity and vector-based

similarity to generate a candidate list, which was re-ranked using a character-level

machine translation model (Pennell and Liu, 2011) and Jazzy Spell Checker,20 etc.

Yang and Eisenstein (2013) used an unsupervised approach that learns string edit

distance, lexical, and contextual features using a log-linear model and sequential

Monte Carlo approximation.

Singh et al. (2018); Costa Bertaglia and Volpe Nunes (2016) used word em-

beddings to find similar standard and non-standard words for text normalization.

Chrupa la (2014) used character-level neural text embeddings (Chrupa la, 2013) as

added information from unlabeled data for better performance. Rangarajan Sridhar

et al. (2014) used deep neural networks to learn distributed word representations.

We experimented with word embeddings as a feature in our similarity measure in

the supplementary experiments Table 11.

Hany Hassan (2013) used a 5-gram language model to create a contextual similar-

ity lattice and applied Markov random walk for lexicon generation. Their approach

uses a linear combination of contextual feature and string similarity (longest com-

mon subsequence ratio and edit distance), which is very similar to our approach.

However, unlike Hany Hassan (2013), we assume that every Roman Urdu word

is a noisy word and thus can not separate nodes of the graph into standard and

non-standard forms. Sproat and Jaitly (2017) used a recurrent neural network to

normalize text. Pennell and Liu (2011); Li and Liu (2014) used a character-level

20 http://jazzy.sourceforge.net/

http://jazzy.sourceforge.net/
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machine translation system for the normalization task. Lusetti et al. (2018) used an

encoder-decoder architecture where different levels of granularity were used for the

target-side language model, e.g. characters and words. Wang and Ng (2013) used

a beam-search decoder with integrated normalization operations such as missing

word recovery and punctuation correction to normalize non-standard words. Our

work, however, is limited to grouping the lexical variations of Roman Urdu words.

However, we do not have any labeled data or parallel data available to build such a

translation system. Our proposed method is robust since it learns from user data,

and it groups abbreviations and their complete forms together in one cluster.

Almeida et al. (2016) used a standard English dictionary and an informal En-

glish dictionary to normalize words to their root forms. In our case, we do not use a

standard dictionary as one does not exist for Roman Urdu words. Ling et al. (2013)

automatically learned normalization rules using a parallel corpus of informal text.

Irvine et al. (2012) used manually prepared training data to build an automatic

normalization system for the Roman Urdu script. Unlike Irvine et al. (2012), we

propose an unsupervised approach, which does not require labeled data. Addition-

ally, our approach to the Roman Urdu normalization problem does not require us

to have a corresponding Urdu script form for each Roman word.

Phonetic encoding schemes There have been several sound-based encoding schemes

used in the literature to group similar sounding words together. Here, we summa-

rized a few of the schemes in the context of lexical normalization.

The Soundex algorithm (Knuth, 1973; Hall and Dowling, 1980) encodes the first

letter and the following three consonants of a word with consonants having a simi-

lar place of articulation sharing the same code. The NYSIIS method (Taft, 1970),

designed by the New York Police for American names, employ more sophisticated

encoding rules based on multi-character n-grams and relative vowel positioning.

The Metaphone algorithm (Philips, 1990), developed in 1990 as a Soundex variant,

incorporates English pronunciation rules for phonetic encoding of words. Other,

more-recent variations include Caverphone (Wang, 2009) and Double Metaphone;21

they include complex grammatical rules for phonetic encoding of words. The Dou-

ble Metaphone algorithm also differs from others in that it generates up to two

encodings for each word – one reflects the basic version of the word’s pronuncia-

tion, and the other reflects an alternative pronunciation based on other languages.

This is particularly useful when comparing foreign names with their anglicized ver-

sions. For example, the names Catherine and Katrina have a common code KTRN.

Previous algorithms like Metaphone and Soundex do not provide such a capability.

Most of these schemes are designed for English and European languages and are

not sufficiently expressive, especially for lexical normalization or when applied to

another family of languages.

We propose a method to find lexical variations in Roman Urdu that uses string

edit distance like Contractor et al. (2010), sound-based encoding like Pinto et al.

21 http://en.wikipedia.org/wiki/Metaphone

http://en.wikipedia.org/wiki/Metaphone
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(2012), and contextual information like Han et al. (2012) combined in a discrimina-

tive framework. In contrast to previous work, our method does not use a resource

of standard word forms to find lexical variations.

6 Conclusion and future work

Roman Urdu is a transliterated form of the Urdu language written in Roman script,

used in informal communication in social media and SMS texts. It does not have a

standard lexicon, which results in an extensive use of lexical variations that hamper

automatic processing. Our framework for lexical normalization of Roman Urdu

is an unsupervised model meant to address this important issue. Our clustering

framework incorporates customized phonetic encoding, string-based matching, and

contextual similarity. We conducted an extensive evaluation of our framework on

four real-world datasets. We used manually generated gold standard containing

Roman Urdu lexical variations with their standard forms (Khan and Karim, 2012).

We show that our framework effectively discovers lexical variations in Roman Urdu

corpora with significant improvement over the baseline methods.

Our work brings us one step closer to automatically generating a normalized Ro-

man Urdu corpus. We can cluster spelling variations of a word and then map them

to the most frequent form, and can use this corpus to develop NLP applications.

In the future, we would like to extrinsically evaluate our normalization procedure

on several NLP tasks, such as POS tagging and machine translation.
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