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1 Introduction

Deep neural networks have constantly pushed the
state-of-the-art performance in natural language
processing and are considered as the de facto mod-
eling approach in solving most complex NLP tasks
such as machine translation, summarization and
question-answering. Despite the benefits and the
usefulness of deep neural networks at-large, their
opaqueness is a major cause of concern. Interpret-
ing neural networks is considered important for
increasing trust in AI systems, providing additional
information to decision makers, and assisting ethi-
cal decision making (Lipton, 2016).

Interpretation of neural network models is a
broad area of research. Significant work has an-
alyzed network at representation-level (Belinkov
et al., 2017; Conneau et al., 2018; Adi et al., 2016;
Tenney et al., 2019), and at neuron-level (Bau et al.,
2020; Mu and Andreas, 2020a; Bau et al., 2019;
Dalvi et al., 2019a). Others have experimented
with various behavioural studies to analyze mod-
els (Gulordava et al., 2018; Linzen et al., 2016;
Marvin and Linzen, 2018). Moreover, a number of
studies cover the importance of input features and
neurons with respect to a prediction (Dhamdhere
et al., 2018a; Lundberg and Lee, 2017; Tran et al.,
2018). The topic of interpretation of neural mod-
els has gained a lot of attention in a last couple of
years. For example, it has been added as a regular
track in major *CL conferences. There is an annual
workshop, BlackboxNLP, dedicated for this pur-
pose. The ACL 2020 and EMNLP 20201 featured
tutorials on the topic (Belinkov et al., 2020). The
ACL tutorial focused on two subareas of interpreta-
tion which are the representation analysis and the
behavioral studies. The EMNLP tutorial is solely
focused on behavioral studies i.e. assess a model’s
behavior using constructed examples. Both of these
tutorials serves as a great starting point for the new
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researchers in this area.
The representation analysis, also called as struc-

tural analysis, is useful to understand how various
core linguistic properties are learned in the model.
However, the analysis suffers from a few limita-
tions. It mainly focuses at interpreting full vector
representations and does not study the role of fine-
grained components in the representation i.e. neu-
rons. Also the findings of representation analysis
do not link with the cause of a prediction (Belinkov
and Glass, 2019). While the behavioral analysis
evaluates model predictions, it does not typically
connect them with the influence of the input fea-
tures and the internal components of a model (Vig
et al., 2020).

In this tutorial, we aim to present and discuss
the research work on interpreting fine-grained com-
ponents of a model from two perspectives, i) fine-
grained interpretation, ii) causation analysis. The
former will introduce methods to analyze individ-
ual neurons and a group of neurons with respect to
a desired language property or a task. The latter
will bring up the role of neurons and input features
in explaining decisions made by the model. We
will cover important research questions such as
i) how is knowledge distributed across the model
components? ii) what knowledge learned within
the model is used for specific predictions? iii) does
the inhibition of specific knowledge in the model
change predictions? iv) how do different model-
ing and optimization choices impact the underlying
knowledge?

Recent work on interpreting neurons has shown
that in-addition to gaining better understanding of
the inner workings of neural networks, the neuron-
level interpretation has applications in model distil-
lation (Rethmeier et al., 2020), domain adaptation
(Gu et al., 2021) or efficient feature selection (Dalvi
et al., 2020) e.g., by removing unimportant neu-
rons, facilitating architecture search, and mitigating
model bias by identifying neurons responsible for
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sensitive attributes like gender, race or politeness
(Bau et al., 2019; Vig et al., 2020). These recent
works are not only enabling better understanding
of these networks, but are also leading towards bet-
ter, fairer and more environmental-friendly models,
which are all important goals for the Artificial In-
telligence community at large.

2 Description

The tutorial is divided into two main parts: i) fine-
grained interpretation, and ii) causation analysis.
The first part of the tutorial covers methods that
align neurons to human interpretable concepts or
study the most salient neurons in the network. We
cluster these methods into four groups i) Visual-
ization Methods (Karpathy et al., 2015; Li et al.,
2016a), ii) Corpus Selection (Kádár et al., 2017; Po-
erner et al., 2018; Na et al., 2019; Mu and Andreas,
2020b), iii) Neuron Probing (Dalvi et al., 2019a;
Lakretz et al., 2019; Valipour et al., 2019; Durrani
et al., 2020) and iv) Unsupervised Methods (Bau
et al., 2019; Torroba Hennigen et al., 2020; Wu
et al., 2020; Michael et al., 2020). We will discuss
evaluation methods that are used to measure the
effectiveness of an interpretation method, such as
accuracy, control tasks (Hewitt and Liang, 2019)
and ablation studies (Li et al., 2016b; Lillian et al.,
2018; Dalvi et al., 2019a; Lakretz et al., 2019).
Moreover, we will cover various applications of
these methods that go beyond interpretation such
as efficient transfer learning (Dalvi et al., 2020),
controlling system’s behavior (Bau et al., 2019;
Suau et al., 2020), generating explanations (Mu
and Andreas, 2020b) and domain adaptation (Gu
et al., 2021).

The second part, Causation Analysis, will fo-
cus on methods that seek to characterize the role
of neurons and layers towards a specific predic-
tion. More concretely, we will discuss gradient and
perturbation-based attribution algorithms such as
Integrated Gradients (Sundararajan et al., 2017),
Layer Conductance (Dhamdhere et al., 2018b),
Saliency (Simonyan et al., 2014), SHapley Ad-
ditive exPlanations(SHAP) (Lundberg and Lee,
2017) and showcase how they can help us to iden-
tify important neurons in different layers of a
deep neural network. Besides that we will also
dive deep into more recent and advanced attribu-
tion algorithms that take feature or neuron inter-
actions into account. More specifically, we will
look into Integrated Hessians (Janizek et al., 2020),

Shapely Taylor index (Dhamdhere et al., 2020) and
Archipelago (Tsang et al., 2020).

Lastly, we will mention various open source
toolkits and libraries that provide implementation
of notable techniques in the area. A few exam-
ples of the toolkits are: Captum (Kokhlikyan et al.,
2020), InterpretML2, NeuroX (Dalvi et al., 2019b),
Ecco3 and Diagnnose (Jumelet and Hupkes, 2019).
We will walk-through how some of these tools can
be used for fine-grained interpretation and causa-
tion analysis.

Throughout the tutorial, our goal will also be to
critically evaluate where the strengths and weak-
ness of each of the presented methods lie, and pro-
vide ideas and recommendations around future di-
rections.

3 Outline

1. Introduction: We will introduce the topic
and motivate it by providing the vision of
model interpretability, and how it leads to-
wards fair and ethical models that generalize
well. We will then describe various forms of
interpretation and will outline the scope of the
tutorial (15 minutes).

2. Fine-grained Interpretation: We will
present and discuss the work on neuron-level
interpretation. (90 minutes)

• Methods (30 minutes)
• Evaluation (15 minutes)
• Findings (30 minutes)
• Practical (15 minutes)

3. Causation Analysis: In causation analysis
we will present various methods on interpret-
ing model predictions with respect to input
features and individual neurons. (60 minutes)

• Methods (30 minutes)
• Evaluation (10 minutes)
• Practical (20 minutes)

4. Concept-based Interpretation of Predic-
tion: This part will aim to bridge the gap
between fine-grained interpretation and cau-
sation analysis. We will discuss how fine-
grained interpretation and causation analysis
can be combined to establish concept-based

2https://interpret.ml/
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interpretation of model predictions. (10 min-
utes)

5. Discussion: The last part will discuss the
overall challenges that the current work faces
and suggest future directions. (10 minutes)

4 Prerequisites

We assume basic knowledge of the deep learn-
ing and familiarity with the LSTM-based and
transformer-based pre-trained models such as
ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019). Additionally, some familiarity with natural
language processing tasks such as, named entity
tagging, natural language inference, etc. would
be useful but not mandatory. We do not expect
participants to have familiarity with the research
on the interpretation and analysis of deep models.
Familiarity with Python, Pytorch and Transform-
ers library (Wolf et al., 2019) would be useful to
understand the practical part.

5 Reading List

• In order to get an overview of the interpreta-
tion field, trainees may look at the following
survey papers: Belinkov and Glass (2019) and
Danilevsky et al. (2020).

• Fine-grained analysis and its Applications:
Bau et al. (2019); Dalvi et al. (2019a); Mu
and Andreas (2020b); Suau et al. (2020) etc.

• Causation analysis: Lundberg and Lee (2017)
provides an overview of various methods in-
troduced in literature. For more details, see
the following papers: Voita et al. (2020);
Sundararajan et al. (2017); Dhamdhere et al.
(2018b); Ribeiro et al. (2016); Janizek et al.
(2020)

In addition to the above list, interested trainees may
look at the papers mentioned in Section 2.

6 Instructor Information (Alphabetic
order

Fahim Dalvi, Software Engineer, Qatar Comput-
ing Research Institute, Qatar
Email: faimaduddin@hbku.edu.qa
Website: https://fdalvi.github.io

Fahim Dalvi is an experienced Software En-
gineer with a demonstrated history of working in

the research industry and is currently employed at
the Qatar Computing Research Institute. Fahim’s
research is centered around the intersection of
Natural Language Processing and Deep Learning,
and he has worked on wide variety of problems
in these fields including Machine Translation,
Language Modelling and Explainability in Deep
Neural Networks. He also spends his time
converting research into practical applications,
with a focus on scalable web applications. Fahim
also spends some time every year mentoring
and teaching Deep Learning at Fall and Summer
schools.

Hassan Sajjad, Senior Research Scientist,
Qatar Computing Research Institute, Qatar

Email: hsajjad@hbku.edu.qa
Website: https://hsajjad.github.io

Hassan Sajjad is a Senior Research Scientist
at the Qatar Computing Research Institute
(QCRI), HBKU. His research interests include
the interpretation of deep neural models, machine
translation, domain adaptation, and natural
language processing involving low-resource and
morphologically-rich languages. His research
work has been published in several prestigious
venues such as CL, CSL, ICLR, ACL, NAACL
and EMNLP. His work in collaboration with
MIT and Harvard on the interpretation of deep
models has also been featured in several tech
blogs including MIT News. Hassan co-organized
BlackboxNLP 2020, and the WMT 2019/2020
machine translation robustness task. He served as
an area chair for the analysis and interpretability,
NLP Application, and machine translation tracks at
various *CL conferences. In addition, Hassan has
been regularly teaching courses on deep learning in-
ternationally at various spring and summer schools.

Narine Kokhlikyan, Research Scientist, Facebook
AI

Email: narine@fb.com
Website: https://www.linkedin.com/
in/narine-k-88916721/

Narine is a Research Scientist focusing on
Model Interpretability as part of PyTorch team
at Facebook. Her research interests include the
understanding of Deep Neural Network internals
and their predictions across different applications
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such as Natural Language Processing, Computer
Vision and Recommender Systems. In the recent
years she gave talks and presented tutorials on
Model Interpretability at KDD 2020 and NeurIPS
2019. Before joining Facebook Narine worked
on Natural Language Processing, Time Series
Analysis and numerical optimizations.

Nadir Durrani, Research Scientist, Qatar
Computing Research Institute, Qatar
Email: ndurrani@hbku.edu.qa
Website: http://alt.qcri.org/
~ndurrani/

Nadir Durrani is a Research Scientist at the
Arabic Language Technologies group at Qatar
Computing Research Institute. His research
interests include interpretation of neural networks,
neural and statistical machine translation (with
focus on reordering, domain adaptation, translitera-
tion, dialectal translation, pivoting, closely related
and morphologically rich languages), eye-tracking
for MT evaluation, spoken language translation
and speech synthesis. His recent work focuses on
analyzing contextualized representations with the
focus of linguistic interpretation, manipulation,
feature selection and model distillation. His
work on analyzing deep neural networks has
been published at venues like Computational
Linguistics, *ACL, AAAI and ICLR. Nadir has
been involved in co-organizing workshops such
as simultaneous machine translation and WMT
2019/2020 Machine translation robustness task.
He regularly serves as program committee and has
served as Area chair at ACL and AAAI this year.
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